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Abstract

Network medicine aims at unraveling the cell signaling networks to propose personalized treatments 
for patients suffering from complex diseases. In this short review, we show the relevance of network 
medicine to cancer treatment by outlining the potential convergence points of the most recent tech 
nological and scientific developments in both drug design and signaling networks analysis.
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Introduction
For many years, cancer research has been focusing on developing new drug treatments, and especially 

personalized treatments,  that aim to target the patient's  cancer specifically.  Personalized or targeted 
therapies have been proposed, based primarily  on gene sequencing  (Feero et al. 2011; Hieronymus et 
Sawyers 2012) or gene expression patterns (van  ’t Veer et Bernards 2008; Weigelt, Baehner, et Reis-Filho 
2010; Colombo et al. 2011). A common significant limitation with these personalized therapies is that 
they are  focused  on identifying  one  single  marker that  will  be  measured  to  determine  the  optimal 
treatment.  However,  as was demonstrated by Janes and colleagues  (Janes et al.  2005) in a  landmark 
article, this simplistic approach can lead to wrong decisions. They found that the protein kinase JNK 
could have either a pro- or an anti-apoptotic effect depending on the state of the signaling network. This  
highlights  a  very  important  aspect  of  cellular-decision  processes:  signaling  follows  rules  of  complex 
systems, where the final outcome is dependent not only on the parameters of the system but also on the  
initial conditions (context-dependency). The importance of signaling networks architecture has direct  
implications on biomarker discovery, and several authors have advocated for a shift of the paradigm;  
from one or a few measurements to signaling networks (Barabási 2007; Erler et Linding 2010; Erler et 
Linding 2012; Barabási, Gulbahce, et Loscalzo 2011; Creixell et al. 2012; Pawson et Linding 2008).

Following the signaling network paradigm, which considers external cues to be processed by a series  
of protein-protein interactions and post-translational modifications, and results in phenotypic changes, 
the  analysis  of  a  disease  is  based on several  signals  or  markers  and the  treatment  is  based on the  
assessment of the disease as a system. Suggested therapies take into account the capacity of the system to 
adapt to perturbation (e.g. drug resistance); therefore the proposal of combination therapies that would 
be able to overcome the systems robustness, by anticipating its adaptation mechanisms.

Combination therapies have been around for decades  (DeVita, Young, et Canellos 1975; Al-Lazikani, 
Banerji,  et Workman 2012), and a number of combination therapies with agents that target different 
so-called ‘pathways’ are in clinical trials. For example, in advanced melanoma, studies combining a BRAF 
inhibitor and a Pi3K inhibitor are currently recruiting patients (Clinicaltrials.gov). Even though these 
combination therapies have been designed with the knowledge that cells can adapt to one perturbation 
(Bozic  et  al.  2013),  they  haven’t  been  designed  following  a  systematic  analysis  of  the  cell  signaling 
networks dynamics (i.e. how signals and networks themselves are changing in time) and of the crosstalk  
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between these networks. A fundamental problem is the inherent incompleteness,  non-context aware 
and even incorrect descriptions of dynamic network states as simplistic ‘pathway’ diagrams (Jørgensen et 
Linding 2010).

Thus, other ways to design combination treatments have been proposed, ranging from time-staggered 
application (Lee et al. 2012) to the use of several potentially nonspecific drugs (Hopkins 2008). In the case 
of Lee et al. the utilization of the systems dynamics to improve the efficacy of drugs is groundbreaking,  
and  we  predict  many  more  studies  like  this  will  pave  the  way  for  new  more  powerful  treatment 
strategies,  even  for  combinations  of  drugs  that  hitherto  or  in  previous  clinical  trials  were  deemed 
ineffective. Figure 1 highlights the main differences between classical targeting strategies, hitting a single 
target, and network-based strategies that hit part of, or the whole, of a signaling network.

In this perspective, we review the state-of-the-art in network-based drugs and treatments and propose 
some ways to  provide  more effective  treatments.  We show that  a  better  understanding  of signaling  
networks is a critical step towards such treatments. 

Network treatments
There is a growing amount of experimental evidence that shows the impact of network medicine on 

drug development. The initial work of Schoeberl et al. (Schoeberl et al. 2009) who built a computational 
model of the ErbB signaling network in order to detect the most effective ligands of ErbB, allowed the  
identification of ErbB3 and EGFR as key nodes for ligand response and the design of an antibody to  
specifically target those nodes that stopped the growth of tumors in xenografts mice. This research has 
been followed-up by a number of clinical trials, and the MM-121 antibody is now in phase II clinical trial  
(Clinicaltrials.gov;  merrimackpharma.com/solutions/pipeline).  Earlier  on  Huang  et  al. (Huang  et  al. 
2007) determined a combination treatment  with  c-Met  kinase  inhibitor  and either  an EGFR  kinase 
inhibitor or cisplatin resulted in an increased cytotoxicity.  It also resulted in phase I and II clinical trials 
(Huang, Xu, et White 2009). Other examples can be found in the literature (Leung et al. 2012), proposing 
treatments attacking only one single or a very small number of nodes in these networks.

Because signaling networks can and will rewire themselves after being attacked (Creixell et al. 2012), 
network drugs should be constituted of compounds that will have a significant coverage of the network.  
A classical way to investigate this strategy is to perform a systematic, genome-wide screen  (Luo et al. 
2009) with known compounds. This can highlight potential synthetic drugs, however it doesn't make use 
of any information about the network connectivity or dynamics. A major breakthrough in the field has 
been  carried  out  in  the  Yaffe  lab,16  who  performed  a  detailed  study  of  the  network  changes  after  
time-staggered EGFR inhibition, making the cancer cell more sensitive to DNA-damaging drugs. This 
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Figure 1: Classic versus network view of drug action. In the classic view (A), a drug as a target and off-target effects, which acti  
vate pathways of effectors to trigger therapeutic and side effects, respectively. In the network or systemic view (B), multiple tar  
gets of a signaling network are perturbed, resulting in integrated therapeutic and side effects.

B. Network targeting strategies
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effect  was  highly  time-dependent,  and simple  co-administration  of  the  drugs  resulted  in a  radically 
decreased effect. The combination of both approaches, i.e. time-staggered, genome-wide RNAi screens, 
results in a very large number of putative combinations. Advanced algorithms need to be developed to 
make this approach feasible,  and a better understanding of the regulation networks is  a critical  step 
towards that end (Pawson et Linding 2008).

Despite the accumulating evidence of its potential impact, network medicine is still  in its infancy.  
However, network biology, as well as personalized approaches, are clearly expected to play significant 
role in the development of novel and more sustainable treatments in the future.

Personalized medicine
Beyond the buzzword, personalized medicine is the development of therapies that are targeted at the 

specific tumor affecting the patient (Creixell et al. 2012; Gonzalez-Angulo, Hennessy, et Mills 2010). With 
the scientific and technological advances discussed above, it becomes feasible to integrate sequencing, 
mass spectrometry and genome-wide screening data into predictive computer models. We refer to the 
ability to predict how cells respond to input cues or treatments from their current state of their signaling 
networks as biological forecasting. Similar to weather forecasts, super-computing facilities are required 
to model the complex networks of interactions and their effects on cellular phenotype. In the case of a  
cellular  model,  large-memory  systems  must  hold  the  whole  dataset  in  memory,  as  integrative  and 
non-linear  effects  makes it  impossible  to  split  the  problem into smaller  sub-problems.  Such models 
should  integrate  genetic  (sequencing),  expression  (proteomics  not  mRNA expression),  signaling  (e.g.  
phospho-proteomics)  and  phenotypic  (e.g.  screening  and  imaging)  data.  Early  integrative  network 
biology studies were demonstrated by Janes et al. (Janes et al. 2005), Linding et al.  (Linding et al. 2007), 
Jørgensen  et al.  (Jørgensen et al. 2009) and e.g. Bakal  et al.  (Bakal et al. 2007; Bakal et al. 2008) who 
modeled genetic  and phospho-proteomic  data  with  neural  networks  and other algorithms to  derive  
information on the signaling network architecture. More advanced models of this type can then be used  
to predict which treatment will be most effective against a specific cancer (Creixell et al. 2012).

Practically, several network-targeting strategies are available and the most important ones are shown 
in Figure 2. A network drug can target a single, central node of a signaling network (Figure 2A). But more 
complex, multi-target therapies can be developed as well, with either a single multi-targeted drug hitting 
several nodes (Figure 2B), or several specific drugs each hitting a different node of the signaling network 
(Figure 2C). Alternatively, one can also imagine multiple multi-target kinase inhibitors (Figure 2D) may 
result in a specific overall impact on the tumor cells signaling networks which can be beneficial from the 
therapeutic point of view.

However,  the  limited  number  of  drugs  approved by  the  US FDA currently  reduces  the  choice  of 
potential targets available. In 2006, Overington et al. (Overington, Al-Lazikani, et Hopkins 2006) estimated 
that  the  pharmacopoeia  available  at  this  time  contained  324  distinct  molecular  drug  targets.  This 
relatively small number of targets must be mitigated with the relative lack of specificity of many drugs, 
also termed promiscuity,  meaning most drugs actually  hit several targets  (Nobeli,  Favia,  et Thornton 
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Figure 2: The three most important network-targeting strategies. A single drug can be used to target a single node of the net 
work (A) or multiple nodes can be targeted with one multi-targetet (B) or several specific (C) or multi-targeted (D) drugs.
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2009; Hopkins 2009). Kinase inhibitors in particular have been shown not to be very selective (Karaman 
et al. 2008; Davis et al. 2011; Anastassiadis et al. 2011). Some researchers such as Andrew Hopkins argued 
that promiscuity is part of a drug's efficacy and that one could take advantage of this lack of specificity to 
design  drugs  hitting  several  targets  at  once  and maximize  the  drug's  clinical  effect  (Hopkins  2008; 
Hopkins, Mason, et Overington 2006). This is indeed supported by Gleevec and many other drugs being 
approved  for  secondary  indications,  or  having  extensive  off-label  usage  (Kesselheim  et  al.  2012).  A 
potentially  interesting  advantage  of  designing  network-based  treatment  strategies  could  be  the 
possibility  of  using  lower  doses  of  each  drug  to  maintain,  or  improve,  efficacy  whilst  reducing 
side-effects, as proposed by Lötsch and Geisslinger (Lötsch et Geisslinger 2011).

Unfortunately, the pharmaceutical industry is still essentially focusing on developing drugs that hit a 
given  target  as  specifically  as  possible.  We  question  this  strategy  that,  while  it  may  be  useful  in 
identifying the best drug for a given node, does not equal the best treatment strategy, nor the best target. 
Such  knowledge  must  be  derived  through  systematic  biological  studies  of  the  signaling  networks 
associated with  the  disease  or  cancer  type.  A  notable  exception  is  Merrimack  Pharmaceuticals  Inc. 
(Cambridge,  MA,  USA)  that  develops  multi-targeted,  network-attacking  antibodies  named  MM-111 
(Kirouac et al. 2013), MM-141 and MM-151 (merrimackpharma.com/solutions/pipeline).

New strategies for drug development are being developed that will eventually provide a larger catalog 
of potential drugs to choose from and combine. Initiatives to establish this catalog are ongoing (Paolini 
et al. 2006), with the DrugBank  (Knox et al. 2011),  CANsar  (Halling-Brown et al.  2011) and ChEMBL 
(Gaulton et al. 2011) databases providing mapping between drugs and their targets. A new class of drugs 
that we predict will soon expand this catalog are siRNA molecules that suppress the expression of a gene. 
Upon entering the cell, the siRNA molecule will trigger the assembly of the RISC complex, and bind with  
the target mRNA which will  be cleaved. The main barrier to the design of siRNA-based drugs is the 
delivery of a charged molecule to the target tissue. This challenge is addressed with the development of a  
large variety of groundbreaking carrier nanoparticles  (Lee et al. 2012; Whitehead, Langer, et Anderson 
2009).  The first  clinical  trials  are  ongoing  (Burnett  et  Rossi  2012),  and will  hopefully  soon deliver  a 
genome-wide catalog of potential treatments and treatment combinations from which a personalized 
treatment can be chosen. Furthermore, research is ongoing to develop the delivery of combinations of 
siRNA with other drugs (Meng et al. 2013).

Perspectives
At the moment even with the relatively low number of FDA approved drugs it would be impractical to 

screen all possible combinations across all cell types and secondary or higher order alternate input cues 
(Janes et al. 2005). If we include all potential candidate drugs, the number of combinations scales to an 
unfeasible level. A better understanding of the signaling networks, together with biological forecasting 
models, will be needed to guide the relevant questions and hypothesis to test in drug screens (Creixell et 
al. 2012). Such models can also help explore parts of the networks’ state spaces otherwise non-reachable  
through  screening  (Creixell  et  al.  2012).  Lee  et  al. (Lee  et  al.  2012) demonstrated the  complexity  of 
signaling  networks,  and  a  proof  of  concept  that  complex  treatments  strategies  can  deal  with  this 
complexity. However, more systematic approaches based on signaling network models are required to 
efficiently drive the development of more network therapies.

Several important issues remain to be solved. What data can we reasonably collect from the patient? 
While it seems realistic to obtain a tissue sample from the primary tumor that can be genotyped and 
analyzed by mass-spectrometry  for  (phospho-)proteomics  profiling,  it  could be impractical  to  collect 
such data in certain cases,  for instance from metastatic  sites where the cells  are spread through the 
patient's body and often undetectable. In some cases this can be counter acted by single-cell technology,  
for example  the CyTOF single-cell  mass-cytometer  (Bodenmiller  et al.  2012).  Research is  ongoing to 
exploit  tumour  cells  and  DNA  markers  circulating  in  blood  to  gain  additional  information  on  the  
tumour  (De Mattos-Arruda  et  al.  2013) like  initial  or  acquired  mutations,  drug  sensitivity  and early 
relapse detection (Crowley et al. 2013). Then again there still remains the question of how we can verify 
whether  the  treatment  is  having  an  effect?  The  most  elaborated  approach  to  monitoring  cancer 
treatment  response  is  imaging  using  PET,  CT or  (DW-)MRI to  estimate  tumor size,  shape,  texture,  
structure and dynamics (Thoeny et Ross 2010). These techniques can also be used to detect therapeutic 
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effects  on  tumor  metabolism  (18F-Fluordesoxyglucose  uptake)  and  cell  proliferation 
(18F-Flourothymidine incorporation)  (Avril, Sassen, et Roylance 2009). However, often metastatic sites 
are  missed due to  non-comprehensive  data  analysis  or tumor cell  colonies  below the detector limit 
surviving treatment.

An interesting  alternative  to  patient  sample  collection  is  being  developed at  the  M.  D.  Anderson 
Cancer  Center  under  the  codename  "T9  project"  where  immunocompromised  mice  are  used  as 
xenograft  models.  A  small  biopsy  of  the  patient  tumours  is  transplanted  into mice,  which  are  then 
treated with various drugs in order to establish which one induces the strongest effect (Gonzalez-Angulo, 
Hennessy,  et  Mills  2010).  Such in  vivo  testing  could  complement  in  vitro  and in  silico  models  and 
eventually lead to better and more personalized drug treatments.

Conclusion
Network  medicine  holds  the  promise  of  delivering  more  personalized  and efficient  treatments  of 

cancers. With the larger sets of candidate drugs that will be available in the near future, network-based 
analysis could be the bridge that will point out which treatment, either a single drug, a combination of 
drugs, time-staggered or other complex treatment, will most efficiently treat a given patient. This will 
also pave the way for sustainable medicine of the future.
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