
PanelomiX: a threshold-based algorithm to create panels of 
biomarkers 

Xavier Robina, Natacha Turcka, Alexandre Hainarda, Natalia Tibertia, Frédérique Lisacekb, 
Jean-Charles Sanchez, a, Markus Müllerb

a Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.
b Proteome Informatics Group, Swiss Institute of Bioinformatics, Geneva, Switzerland.

April 2013

Abstract

In order to increase their predictive power, medical biomarkers can be combined into panels. However,  
the lack of ready-to-use tools generating interpretable results and implementing rigorous validation 
standards hampers the more widespread application of panels and their translation into clinical prac 
tice.
The computational toolbox we present here – PanelomiX – uses the iterative combination of biomark 
ers and thresholds (ICBT) method. This method combines biomarkers and clinical scores by selecting 
thresholds that provide optimal  classification performance.  To speed up the calculation for  a large 
number of biomarkers, PanelomiX selects a subset of thresholds and parameters based on the random 
forest method. The panels’ robustness and performance are analysed by cross-validation (CV) and re 
ceiver operating characteristic (ROC) analysis.
Using 8 biomarkers, we compared this method against classic combination procedures in the determi 
nation of outcome for 113 patients with an aneurysmal subarachnoid haemorrhage. The panel classified 
the patients better than the best single biomarker (p < 0.005) and compared favourably with other  
off-the-shelf classification methods.
In conclusion, the PanelomiX toolbox combines biomarkers and evaluates the performance of panels to 
classify patients better than single markers or other classifiers. The ICBT algorithm proved to be an 
efficient classifier, the results of which can easily be interpreted.
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Introduction
The translation of panels of biomarkers into clinical practice is principally obstructed by two critical 

factors  (Robin  et  al.  2009).  Firstly,  methods  and  results  can  often  be  difficult  to  understand  for 
non-experts;  secondly,  there  is  a  general  lack  of  robust  validation  steps,  which  are  critical  for  the  
reproducibility of results given high biological variation.

To overcome the first issue, a combination method must produce clear and easily interpretable results, 
where patient classification can be understood in terms of the contribution of each individual biomarker. 
Medical practitioners have long been used to clinical scores, such as the Hoffer-Osmond test to diagnose 
schizophrenia (Hoffer & Osmond 1961; Kelm & Hoffer 1965), or the Ranson score (Ranson et al. 1974) for 
the prognosis and operative management of acute pancreatitis. These methods were recently applied to 
assess the probability of pulmonary embolism  (Wicki et al. 2001) and acute pancreatitis  (Imrie 2003). 
These types of scores have become popular because they are clear and easy to interpret, granting access 
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to the intermediate results of individual sub-tests.  This is in contrast to black box classifiers, such as 
neural networks or support vector machines (SVM), which may display high accuracy, but which do not 
reveal the contribution of each individual marker directly. While black boxes are acceptable in specific 
applications, they may not always be suitable in expert systems for medical decision-making (Duch et al. 
2004; Andrews et al.  1995; Baker 2005). In contrast,  many methods present results in a user-friendly 
format referred to as “white boxes”. 

Combining biomarkers is an application of statistical learning. Over the years, this field has developed 
countless methods to tackle the task. Linear or logistic regression methods determine a factor, generally  
multiplicative,  for  each  biomarker  included  in  the  panel.  A  straightforward  interpretation  of  these 
factors is to see them as the “weights” of influence of the biomarkers. Methods based on decision trees 
also provide an easy interpretation,  where one follows a sequence of binary  splits.  As long as a tree 
contains only a fairly  limited number of such decisions (or branches),  these are easy to track and to  
justify how a decision was reached. Decision trees are graphically expressive (see (Robin et al. 2009)) for 
easier understanding. Finally, in threshold-based methods, all biomarker tests are analysed at the same 
time (instead of sequentially), and the number of positive tests defines a score used for classification.

The second issue is the lack of a robust validation step. Panel validation requires an independent test  
set – preferably measured in a different laboratory – in order to compute the panel’s true performance 
and avoid performance overestimation due to over-fitting the data during the learning process (Robin et 
al. 2009). If  no independent set is available,  computational methods such as cross-validation (CV) or 
bootstrapping allow the simulation of such sets (Hastie et al. 2003; Dziuda 2010). 

Two  useful  and  quite  common  performance  measures  are  sensitivity  (the  proportion  of  positive  
patients  correctly  detected by  the  test)  and specificity  (the  proportion of  negative  patients  correctly 
rejected by the test), as they give clear estimates of how patients are classified (Robin et al. 2009). When 
no biomarker level cut-off is preferred or pre-defined, receiver operating characteristic (ROC) analysis 
can be performed to weight the trade-off between sensitivity and specificity (Hastie et al. 2003). The area 
under the ROC curve (AUC) is  also a very common performance metric  in medical  decision-making 
(Pepe 2003), bioinformatics  (Sonego et al. 2008) and statistical learning  (Fawcett 2006). An important 
and often neglected step is the panel’s performance comparison against that of single biomarkers. A fair 
evaluation would process the panel and single biomarkers with the same tools (sensitivity and specificity 
or AUC) on the same independent test set or with the same CV procedure  (Robin et al. 2009). Then 
performance could be compared either with McNemar's test (for sensitivity or specificity) or using ROC 
curves.

The method we propose here is  called PanelomiX. In this  paper,  we use threshold as the base of 
decisions.  In threshold-based combinations,  thresholds are often chosen in a univariate manner.  For 
example, Ranson et al. (Ranson et al. 1974) selected convenient prognostic sign cut-off values outside the 
range of the mean plus or minus one standard deviation; Morrow and Braunwald (Morrow & Braunwald 
2003) chose the 99th percentile of the control distribution; Sabatine et al. (Sabatine et al. 2002) used the 
cut-offs  described  in  the  literature.  In  contrast,  Reynolds  et  al. (Reynolds  et  al.  2003) adopted  a 
multivariate approach and tested many thresholds by 10% increments. This approach takes into account 
the interaction that may arise when biomarkers are combined. 

 PanelomiX can combine biomarkers (molecule levels, clinical scores, etc.) in a multivariate manner. 
Therefore we developed an exhaustive search algorithm to select the threshold, and called it iterative 
combination of biomarkers and thresholds (ICBT). To minimize execution times, we developed several 
approaches  to  reduce  complexity  and hence  increase  search  speed.  As  it  has  been shown to  be  an  
efficient feature selection method (Dziuda 2010), we used random forest (Breiman 2001; Liaw & Wiener 
2002) as a filtering method to reduce both the number of biomarkers and thresholds that account for the 
search space size. Random forest builds a large number of decision trees that are made slightly different  
by bootstrapping. In the end, the classification is the average prediction of all trees. 

PanelomiX  has  already  been  applied  to  predict  the  outcome  of  an  aneurysmal  subarachnoid 
haemorrhage (aSAH) (Turck et al. 2010) and to assess the progression of human African trypanosomiasis 
(Hainard et al. 2009). Below, we demonstrate the PanelomiX methodology and performance, using 8 
parameters for the determination of outcome for patients with an aSAH.
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 Methods
Iterative combination of biomarkers and thresholds (ICBT)
Combining biomarkers

The approach adopted here is based on the ICBT method. A threshold is defined for each biomarker by 
an  optimization  procedure  defined  in  the  following  sections.  A  patient’s  score  is  the  number  of 
biomarkers exceeding their threshold values.

We can write this as:

S p=∑
i=1

n

I (X ip>T i ) , Equation 1

where  Sp is the score for patient  p,  n is the number of biomarkers,  Xip is the concentration of the ith 

biomarker in patient p,  Ti is the threshold for the ith biomarker, and I(x) is an indicator function which 
takes the value of 1 for x = true and 0 otherwise.

If  biomarker  concentrations  are  higher  in  the  control  than  in  the  disease  group,  then  they  are 
multiplied by -1 before applying the previous formula.

To classify a patient, a threshold on the Sp score is required and defined as Ts. Patients with a score Sp ≥ 
Ts are positive; negative otherwise.
Selecting the thresholds

The  list  of  thresholds  tested  in  the  ICBT  search  must  be  kept  short  to  limit  computation  time.  
Candidate thresholds are selected as local extremums of the ROC curve, computed with pROC (Robin et 
al.  2011).  A local  extremum is  defined as a  point  of  local  maximal  distance to  the diagonal  line.  To  
construct the ROC curve we sort the list of biomarker values, resulting in a list of increasing specificity 
(SP) and decreasing sensitivity (SE). The threshold value Ti is a local extremum if SP[i] ≥ SP[i-1] and SE[i] 
≥ SE[i+1].  Thresholds  that  are  not  local  extremums  will  not  lead  to  better  classification.  Several 
thresholds are usually extremums on a ROC curve.
Optimizing the panel

The combinatorial complexity of testing all combinations of biomarkers and threshold values with 
ICBT can be calculated.  Given  n biomarkers,  and panels with up to  m biomarkers,  the number  C of 
biomarker combinations to test, is given by:

C=∑
i=1

m

(ni )=∑
i= 1

m
n!

i! (n−i ) !
Equation 2

If there are t thresholds per biomarker, formula 3 gives the total number I of threshold combinations 
to test:

I=∑
i=1

m

( n!
i! (n−i ) !

t i) Equation 3

In addition, all possible Ts from 1 to n-1 are considered.
In a typical setup, one would test combinations of 5 or less out of 10 biomarkers, with 15 thresholds per  

biomarker.  This  corresponds  to  637  possible  biomarker  combinations  to  test.  The  total  number  of 
possible combinations of thresholds and biomarkers comes to 202 409 025, which is still  manageable 
using current desktop computers.

In most real world applications, however, each biomarker will have a different number of thresholds. If  
T is a vector containing the number of thresholds of all biomarkers in combination j, a more precise 
estimate is given by:

I=∑
j=1

C

(∏ T j ) Equation 4

Pre-filtering
When computational time becomes too long, an additional step is necessary to reduce the number of 

biomarkers and thresholds. From the N initial biomarkers, P biomarkers are selected (with P < N), each 
associated with  Q cut-offs.  .  In  PanelomiX,  random forest  (Breiman  2001;  Liaw  &  Wiener  2002) is 
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employed as a multivariate filter  (Dziuda 2010). The trees created during the process are analysed to 
deduce the most frequent biomarkers and thresholds that give the most interesting combinations.

 We proceed by stepwise elimination. First, a random forest with all the N biomarkers is created. The 
frequency each biomarker appears in tree branches is extracted and the N-1 biomarkers occurring most 
often are kept to build the next random forest. These two steps are repeated until the target number of P 
biomarkers  is  reached.  Finally,  a  last  random  forest  is  computed  with  P remaining  biomarkers  to 
determine the  Q thresholds occurring most frequently  for each marker.  As each tree of the random 
forest is computed from a different set of patients, the cut-offs will differ slightly between the decision 
trees of the forest. To be more informative, the thresholds are therefore mapped to the original ones  
using Euclidean distance. Thresholds are then sorted by frequency and the  Q first thresholds of each 
biomarker are selected for an exhaustive search.

Code optimization
At the programming level, the ICBT search was optimised to run faster. First, it was implemented in  

the compiled programming language Java, which typically runs much faster than interpreted languages 
such as R, Perl or Python. Efficient implementation was achieved by minimizing the creation of objects,  
using explicit programmatic loops instead of recursion and multithreading.

Biomarkers with missing values are ignored. Missing value  imputations must be performed before 
submitting the data to PanelomiX (see (Aittokallio 2010) for an in-depth review of this topic).

Cross-validation
Cross-validation (CV) is  a  simple  and widely  used computational  method to assess  a classification 

model’s performance and robustness  (Hastie et al. 2003; Robin et al. 2009). PanelomiX features a CV 
procedure for panel verification (Hastie et al. 2003). Its primary goal is to test panel performance in an 
unbiased manner and to produce graphical diagnostic plots for evaluating consistency and robustness. 
After CV, ROC analyses were performed on the individual biomarkers and the panel, and several plots  
were generated to assess the quality of the data.

A standard, k-fold cross-validation (CV) scheme was used to compare the different models generated. 
To avoid model-to-model scoring differences and make predictions comparable between the CV steps,  
which may produce panels of different lengths with different Ts, the prediction is centred as follows: 

Y p=S p−T s
Equation 5

Z p(Y p)={ Y p/T s ,Y p<0
Y p/(n−T s) , Y p>0

Equation 6

As a result, the centred vector Z of patient scores is in the [-1;+1] interval and Ts =0.

ROC curves
We perform ROC analysis of the curves of both the individual biomarkers and the panels using the 

pROC tool (Robin et al. 2011) in R (R Development Core Team 2008). Three tables are generated showing 
AUC,  sensitivity,  and  specificity,  all  with  confidence  intervals.  The  first  table  reports  the  ROC 
performance  of  single  biomarkers  and their  best  univariate  thresholds;  the  second  table  shows  the 
comparison  of  the  panel  with  the  best  individual  biomarker  (analyzed  as  a  panel  composed  of  1  
biomarker, to be comparable with the panels); and the third table compares the ICBT panel with other  
classic  combination  methods.  Comparisons  between  two  AUCs  are  performed  using  DeLong's  test 
(DeLong et al. 1988) and between two pAUCs using the bootstrap test  (Robin et al. 2011) with 10 000 
stratified replicates. The ROC curves of the CV are built as the mean of centred predictions over the k 
CV folds. For the CV of the individual biomarkers, the ICBT algorithm is applied with n = 1 and no other 
modification.

Availability
Users can access a password-protected server implementing the algorithms described in this article 

from the following website: http://www.panelomix.net.
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Case study

Patients
The PanelomiX methodology was applied to a previously published data set of 113 patients with an 

aSAH. The goal was to identify patients at risk of a poor outcome six months after an aSAH – those who 
would require specific healthcare management. Detailed results of the study are reported in (Turck et al. 
2010). We will only outline the features relevant to panel analysis here.

Panel analysis
As described above, panels were generated with five proteins (H-FABP, S100 , Troponin I, NKDA andβ  

UFD-1) and three clinical factors (WFNS, Modified Fisher score and age). A ten-fold CV was carried out 
to assess the performance of the biomarkers, the panels and their stability.

Comparison with standard methods
The results obtained with PanelomiX were compared with other methods: logistic regression with the 

glm package and step-wise  elimination functions;  support  vector machines (SVM) using the kernlab 
package (Karatzoglou et al. 2004) (nu-regression with linear kernel); and recursive partitioning decision 
trees using the rpart package (Therneau & Atkinson 1997; Therneau et al. 2012). To be consistent with 
the PanelomiX method, both SVM and decision tree feature sets were determined using an exhaustive  
search of all possible combinations. Additionally, the predictions were centred as described above.

ROC sample size computation
The sample size required for a statistically significant comparison of two ROC curves was calculated 

according to Obuchowski and McClish (Obuchowski & McClish 1997), where variances and covariances 
of the ROC curves were computed using bootstrapping (Efron & Tibshirani 1993).

Results and discussion

Training the panels
The PanelomiX methodology was applied to the 113-patient cohort of the aneurysmal subarachnoid 

haemorrhage study (Turck et al. 2010) in order to define the combination of 8 biomarkers with the best 
classification accuracy. Using the whole cohort as a training set, but without CV, a panel containing 8 
biomarkers (i.e. the 5 proteins and the 3 clinical parameters) was found using the thresholds given in 1. 
The panel’s performance was evaluated using two methods: threshold sensitivity and specificity, and area 
under the ROC curve (AUC). On the training set this panel showed 95% sensitivity and 90% specificity,  
corresponding to an AUC of 95%.

Biomarker H-FABP S100b Troponin 
I

NDKA UFD-1 WFNS Age Fisher 
Score

Threshold 1.11 0.51 2.33 11.08 271.48 1.5 72.5 2.5

Unit μg/l μg/l μg/l μg/l μg/l N/A Years N/A

Table 1: Biomarkers and thresholds in the panel

Cross-validation
Tenfold CV was repeated 10 times with 10 random selections of the folds. The four plots that allowed  

us to evaluate the stability of the panel with CV are shown in Figure 1.
The marker selection frequency plot shows the frequency of selection of each biomarker variable  
in the panels trained in k CV folds. A biomarker with a 100% frequency is selected in all panels;  
the  frequency  is  weighted.  If  one  step  of  the  CV  yields  several  panels,  then  each  of  them 
contributes  less  to the final frequency compared to panels  which were unique in a  CV fold.  
Figure 1A shows that all eight biomarkers selected in the training panel are selected between 88% 
(Fisher score) and 100% (NDKA, H-FABP, S100b, WFNS) of the CV panels.
The panel size  frequency plot  displays  the number of biomarkers in the panels,  weighted as 
described above. Figure 1B shows that 69% of the CV panels contained 8 biomarkers. In 27% of  
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the CV panels  7 biomarkers were selected,  and in the 4% remaining only 6 biomarkers were 
selected. No panels containing 5 or fewer biomarkers were generated during the CV procedure.
The panel Ts frequency plot shows the score Ts, determining how many biomarkers must be 
positive in a patient for the panel to be positive, weighted as described above. In Figure 1C, Ts = 3 
in 25% of the panels, Ts = 5 in 4% and Ts = 4 in the rest of the cases.
The threshold stability plot represents biomarkers on the x-axis and thresholds (as a rank, not an 
absolute value)  of all panels found in the CV on the y-axis.  Each panel corresponds to a line 
joining its constituting set of biomarkers and thresholds. Figure 1D shows that S100b had a very  
stable threshold, unlike NDKA or UFD-1 that showed a larger variation. For H-FABP, 3 clusters 
appeared, corresponding to thresholds of 0.61 g/l (rank 22), 1.11 g/l (rank 33) and 4.51 g/l (rankμ μ μ  
84).  This indicates that the H-FABP cut-off at 5.9 g/l,  found in the training panel,  is  not asμ  
robust as the cut-off at 0.51 g/l found for S100b.μ

Performance evaluation
A ROC analysis was performed as described in the previous section (Figure 1). The panel found using 

the training set was plotted together with that found using CV and the separate biomarkers (see next 
section). Using CV, panels displayed 65.9% sensitivity and 88.9% specificity, corresponding to an AUC of  
88.6%.

Figure 3 shows the performance of PanelomiX on the training set and using CV for panels of different 
sizes. Using CV, panels with 7 biomarkers are optimal, with an AUC (88.8%) slightly higher than panels of 
8 (88.6%). However,  the difference is minimal and it is  difficult  to determine the significance of this 
change. This indicates that the level of over-fitting induced by ICBT is low and that classification with  
panels is an improvement on single biomarkers.

Comparison with single biomarkers
Figure 3 shows that individual biomarkers are slightly over-fitted and display a lower AUC using CV 

(71%) than on the training sample (73%). To perform a fair comparison, PanelomiX compared both panel  
and single biomarkers under CV. To that end, we used the ICBT algorithm where the threshold is chosen 
on the training set, and applied to the test set.

The two best biomarkers,  H-FABP and WFNS, are plotted with ICBT in  Figure  1.  The CV results 
(dotted lines) show that panels of 8 biomarkers, with an AUC of 89%, are superior to the individual  
biomarkers with AUCs of 76% (p = 0.003) for WFNS and 68% (p = 1.5×10-6) for H-FABP.
Comparison with established methods

PanelomiX was compared with three established methods of biomarker analysis: logistic regression, 
SVM and decision trees (recursive partitioning). The results are shown in Figure 4. PanelomiX displayed 
the best AUC (89%), slightly but not significantly higher than SVM (82%, p=0.20) and logistic regression 
(81%, p=0.13). Only recursive partitioning decision trees had a significantly lower AUC of 77% (p=0.03). 
Compared with SVM, PanelomiX gives results with a very similar classification performance, but in a way 
that is easier to interpret.

Evaluation of random forest pre-processing
Classification performance was assessed both with and without the initial pre-processing step using 

random forest.  The  results  are  shown in  Figure  5.  Pre-filtering  made  no difference  in  classification 
efficiency using one biomarker. However, as we tested panels of 2 to 6 biomarkers, it consistently led to 
decreased AUC. Among the possible explanations for this difference, is that the diagnostic plots (data not  
shown) indicated a selection of panels with fewer biomarkers when features were selected with random 
forest;  this  suggests  that  the  tree-based  feature  selection  is  not  optimal  when  combined  with  a 
threshold-based classification. With 7 and 8 biomarkers, the effect was reversed and the classification 
was  even  slightly  improved  when  all  biomarkers  were  selected.  These  results  suggest  that  the 
pre-processing with random forest should be applied with care, and that a few more features than simply 
the target number should be kept in mind.
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Computation time
As stated earlier, all the combinations of all 8 biomarkers and thresholds can be tested.  2 shows the 

processing time to train a single panel and to perform 10 ten-fold CVs. The CV of panels of up to 8  
biomarkers  took  slightly  less  than 6  days  to  complete  on  a  4-core  machine.  Feature  selection  with 
random forest made computation 70 times faster with 8 markers, making it possible to test panels much 
larger than 8 biomarkers when necessary. 
Panel size, n 1 2 3 4 5 6 7 8
Training only 0.25 s 0.34 s 1.2 s 8.2 s 1.6 min 11 min 49 min 2.0 h
Cross-validation 25 s 32 s 2.0 min 9.6 min 1.5 h 15 h 2.0 d 4.4 d
Cross-validation with 
random forest

1.1 min 1.4 min 1.6 min 1.7 min 3.3 min 9.9 min 25 min 1.6 h

Table  2: Execution time for increasingly large panels on an Intel Core 2 Quad CPU Q9550 at 2.83GHz processor. Table  
shows a simple training, and CV (N=10, K=10).

Conclusions
In this paper,  we proposed an algorithmic solution for combining several  biomarkers into a panel  

using  the  ICBT  method  based  on  an  iterative  combination  of  biomarkers  and  thresholds.  We 
demonstrated that the definition of an optimal panel through exhaustive search is feasible with current  
computers.  Unlike  the 10% increments adopted by  Reynolds  et al.  (Reynolds  et  al.  2003),  the set  of 
cut-offs to be tested is selected from the local extremum points on the ROC curve. This guarantees an 
optimal classification,  and is  better suited to the non-normally  distributed data commonly found in 
clinical studies, where the last increments may not be as significant as the first ones. Panels created with  
this  methodology  are  robust  and  easy  to  understand,  even  to  non-mathematicians.  They  provide 
efficient classification when compared with classic methods. We also proposed an approach to reduce 
the complexity and increase the speed of the search for larger data sets with random forest, efficiently 
limiting information loss.

Finally, we showed how to apply the method to answer a real clinical question that was the outcome 
prediction  for  113  patients  following  an  aneurysmal  subarachnoid  haemorrhage.  Further  validation 
studies will be necessary to show whether the ICBT algorithm performs better than classic methods. We 
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could nonetheless show that the classification power of the resulting panel is superior to that of single 
biomarkers. However, to be strictly validated these findings need to be replicated in larger, independent 
cohorts of patients. This step is often omitted in biomarker research. This omission turns out to be even 
more critical  with  panels  of  biomarkers  which are  more  prone to  over-fitting  the  data.  Despite  the  
application  of  cross-validation,  proper  validation  studies  with  external  cohorts  of  patients  will  be 
required to strengthen the conclusions reached through tools such as PanelomiX before the validity of 
these results will be trusted by researchers.

The study analyzes 8 biomarkers, however they were all discovered using univariate approaches and 
some of them were relatively highly correlated  (Turck et al. 2010). Multivariate discovery approaches 
(Erler & Linding 2010) are beyond the scope of this paper, but they could potentially  highlight more 
interesting combinations of biomarkers.

In the clinics, a panel of biomarkers would be employed in a very similar way than a single biomarker 
currently is. The only difference is that several measurements must be performed to reach a result. This 
has been demonstrated as feasible using point-of-care test (POCT) units  (Macdonald & Nagree 2008; 
Saenger & Christenson 2010). However, POCT often lack good biomarker targets, a fact PanelomiX could 
hopefully help solving.

Future  prospects  include the application of this  workflow to  data  sets  with more biomarkers,  for 
instance coming from gene or protein microarrays or Single Reaction Monitoring experiments. It could 
also  potentially  be  applied  to  the  discovery  of  new  biomarkers  displaying  higher  classification 
performance when combination with other biomarkers.
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