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Abstract

Biomarkers  are  characteristics  that  can be  measured objectively  in  a  sample  and 

allow  the  classification  of  this  sample  in  two  or  more  groups.  In  medical 

applications, they are typically employed to diagnose a disease (or more often to help 

the  physician to  establish  the diagnosis  together  with other  diagnostic  tools),  to 

monitor  a  treatment,  or  to  make  a  prognosis  about  the  future  outcome  of  the 

patient.

Prof. Sanchez' group is focused on protein biomarkers, especially in the field of brain 

injuries. Several candidates were discovered with proteomics techniques, and later 

validated with the enrollment of clinical cohorts. Many of these proteins have the 

potential to be translated to clinical practice. However, their discrimination power 

(measured with sensitivity and specificity) is not perfect, and research is still ongoing 

to find better biomarkers.

This  research  is  mostly  characterized  by  technological  advances  that  are 

continuously  emerging  in  biomedical  research.  Another  approach  that  has  been 

slowly emerging is to make use of the computational power available nowadays to 

combine or model the information of several biomarker into a so-called panel with 

better discrimination characteristics.

This thesis focuses on this second approach and presents an original method to the 

combination of biomarkers. To maximize its acceptance by the medical community 

we investigated transparent  methods  that  create easily  interpretable  models.  We 

especially  focused  on  threshold-based  combinations,  that  are  the  closest  to  the 

traditional interpretation of a single biomarker. Other standard methods were also 

investigated.

Such a project involves thorough statistical analysis. We evaluated both biomarkers 

and  panels  with  three  related  measures:  receiver-operating  characteristic  (ROC) 

analysis,  specifically  the  full  and  partial  areas  under  the  ROC curve  (AUC);  and 

sensitivity  and  specificity  measures.  To  perform  this  analysis,  we  developed  the 

pROC package for the R and S+ statistical environments.
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An important part in the discovery of a biomarker is the validation step, to ensure 

that the  finding is not a false positive. This step becomes even more crucial with 

panels of biomarkers, as the risk to over-fit the data grows with the dimension of the 

search  space.  To  that  end  we  implemented  a  10-fold  cross-validation  scheme 

allowing the comparison of different combination methods, as well as with single 

biomarkers.

In  order  to  be  usable  by  scientists  in  the  lab  and  other  researchers  without  a 

background in computer science, we implemented this pipeline in a web interface 

called PanelomiX. It will ultimately help spreading panel analysis of biomarkers and 

ensure that a robust statistical analysis is performed.

2



Résumé en français

Les  bio-marqueurs  sont  des  caractéristiques  qui  peuvent  être  mesurées 

objectivement dans un échantillon, et permettent,  dans le cas d'une classification 

binaire ou multi-classes, l'assignation de cet échantillon à l'un des groupe. Dans le 

domaine  médical,  les  bio-marqueurs  sont  utilisés  pour  poser  le  diagnostic  d'une 

maladie  (ou,  le  plus  souvent,  pour  aider  le  médecin  à  établir  son  diagnostic  en 

combinaison avec d'autres outils), pour réaliser un suivi thérapeutique, ou pour faire 

un pronostiquer les conséquences à long terme pour le patient.

Le groupe de recherche du Prof. Sanchez s'intéresse aux bio-marqueurs protéiques, 

en  particulier  dans  le  domaine  des  maladies  cérébrales.  Plusieurs  bio-marqueurs 

candidats ont été découverts au moyen des techniques de protéomiques, puis validés 

sur de grandes cohortes de patients. Beaucoup de ces protéines ont le potentiel pour  

être  transférées  dans  la  pratique  médicale.  Cependant,  leur  puissance  de 

discrimination (mesurée par des statistiques telles que la sensibilité et la spécificité) 

n'est  pas  parfaite,  et  les  recherches  continuent  pour  trouver  de  meilleurs  bio-

marqueurs.

Cette  recherche  est  caractérisée  par  l'émergence  presque  continue  de  nouvelles 

innovations technologiques. Une approche alternative est d'utiliser la puissance de 

calcul  disponible  grâce  aux  ordinateurs  actuels,  afin de  combiner  (ou modéliser) 

l'information contenue dans plusieurs bio-marqueurs en un panel plus discriminant.

Cette thèse étudie cette deuxième approche et présente une méthode originale de 

combinaison  des  bio-marqueurs.  Afin  d'en  maximiser  l'acceptation  par  la 

communauté médicale, nous avons particulièrement mis l'accent sur la transparence 

des méthodes de combinaison et la facilité d'interprétation des modèles ainsi créés. 

En  particulier,  nous  nous  sommes  intéressés  à  la  combinaison  par  seuils,  qui 

s'approche  au  plus  près  de  l'analyse  d'un  bio-marqueur  seul.  D'autres  méthodes 

classiques ont également été investiguées.

Un tel projet comprend une part importante d'analyse statistique. Nous avons évalué 

les bio-marqueurs et les panels à l'aide de trois mesures reliées : la courbe d’efficacité 

du récepteur (courbe ROC), et en particulier les aires complètes ou partielles sous 
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cette courbe (AUC), ainsi que les mesures de sensibilité et spécificité. Afin de réaliser 

cette analyse, nous avons développée pROC, un  package pour les environnements 

statistiques R et S+.

Une étape importante dans la découverte d'un bio-marqueurs est sa validation, qui 

permet de s'assurer qu'il ne s'agit pas d'un faux positif. Cette étape devient encore 

plus importante avec un panel de bio-marqueurs, car le risque de surapprentissage 

augmente avec le nombre de dimensions de l'espace de recherche. Pour éviter cela 

nous  avons  implémenté  une  validation  croisée  en  10  fois,  qui  permet  une 

comparaison  objective  des  différentes  méthodes  de  combinaison  et  des  bio-

marqueurs seuls.

Afin de pouvoir être utilisé par les scientifiques du laboratoire ou d'autres chercheurs 

sans bagage informatique particulier, nous avons réalisé une interface Web, nommée 

PanelomiX.  Elle  permettra  à  terme  de  développer  l'analyse  combinée  des 

biomarqueurs et de s'assurer qu'une analyse statistique robuste est effectuée.
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Organization of this thesis

Chapter 1 is a general introduction on the combination of biomarkers. It offers an 

outline  of  the  statistical  measures  applicable  to  the  analysis  of  biomarkers,  an 

overview of the methods available to combine them into panels, along with relevant 

definitions.

The review of chapter 2 was published in  Expert Review of  Proteomics in 2009. It 

presents the combination methods in more detail, with more examples coming from 

the literature. It analyses the weaknesses of the analysis commonly performed with 

biomarkers, and proposes a few potential target to improve the robustness of the 

statistical evaluation of biomarkers.

Chapter 3, published in BMC Bioinformatics in 2011, describes the first tool developed 

to achieve the goals outlined in chapter 2. pROC is a package of tools for the R and 

S+  statistical  environments  to  perform  ROC  analysis.  It  proposes  an  improved 

workflow with confidence intervals computation and statistical comparison between 

two ROC curves, enabling the proper comparison of the performance of biomarkers.

In chapter 4, the main results of this thesis, PanelomiX, both a workflow and a tool, 

is  described  in  detail.  The  workflow  is  organized  around  the  combination  of 

biomarkers based on thresholds found with exhaustive search and optionally pre-

filtered  with  Random  Forest.  Cross-validation  serves  both  as  a  validation  of  the 

stability  of  the  panel  over  small  changes  in  the  dataset,  and  to  evaluate  the 

performance of the biomarkers on datasets independent from the training of the 

panel.  Finally,  ROC  analysis  with  pROC compares  the  panels  with  the  separate 

biomarkers.

Chapter 5 and 6 present two clinical applications of the PanelomiX method on the 

prediction  of  outcome  after  aneurysmal  subarachnoid  hemorrhage  (published  in 

2010 in Intensive Care Medicine) and on the staging of patients with human African 

trypanosomiasis (published in 2009 in PLoS Neglected Tropical Diseases).

Finally,  chapter  7  summarizes  and  discusses  the  results  and  proposes  some 

perspectives to further improve the biomarker combination methods.

7



8



Table of Contents

Abstract.......................................................................................................................................1

Résumé en français...................................................................................................................3

Acknowledgements..................................................................................................................5

Organization of this thesis......................................................................................................7

Chapter 1..................................................................................................................................11
Introduction

Chapter 2.................................................................................................................................45
Bioinformatics for protein biomarker panel classification: What is needed to bring 
biomarker panels into in vitro diagnostics?

Chapter 3..................................................................................................................................63
pROC: an open-source package for R and S+ to analyze and compare ROC curves

Chapter 4.................................................................................................................................73
PanelomiX: a web-based tool to create biomarker panels based on thresholds

Chapter 5.................................................................................................................................89
A multiparameter panel method for outcome prediction following aneurysmal 
subarachnoid hemorrhage

Chapter 6...............................................................................................................................101
A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African 
Trypanosomiasis Patients

Chapter 7................................................................................................................................113
Discussion, conclusions and perspectives

List of publications...............................................................................................................127

9



10




Introduction





1 A brief overview of biomarkers

1.1 What is a biomarker?

According to the  Biomarkers  Definitions  Working Group,  a  biomarker  (also named 

biological marker) is “a characteristic that is objectively measured and evaluated as 

an indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention1.”

The  World  Health  Organization gives  a  slightly  more  restrictive  definition  in  its 

clinical application. “A biomarker is any substance, structure or process that can be 

measured  in  the  body or  its  products  and influence  or  predict  the  incidence  of 

outcome or disease2.”

The  Medical  Subject  Headings  (MeSH)  database 

(http://www.ncbi.nlm.nih.gov/mesh) also proposes its definition of a biomarker as 

“Measurable  and  quantifiable  biological  parameters  (e.g.,  specific  enzyme 

concentration, specific hormone concentration, specific gene phenotype distribution 

in a population, presence of biological substances) which serve as indices for health- 

and  physiology-related  assessments,  such  as  disease  risk,  psychiatric  disorders, 

environmental  exposure  and  its  effects,  disease  diagnosis,  metabolic  processes, 

substance abuse, pregnancy, cell line development, epidemiologic studies, etc.”

All these definitions correspond to two concepts: first the objective measurement of 

a parameter in a biological sample, and secondly its application to classify patients1.

Several types of objective biomarker measurements can be performed on patients.  

One  can  measure  physiological  parameters  such  as  the  blood  pressure3,  or 

electrocardiogram4.  Another  more  complex  type  of  biomarkers  are  obtained  by 

imaging techniques such as CT scan4 or MRI5. Questionnaire-based clinical scores 

where a nurse interviews the patient, such as the World Federation of Neurosurgical 

Societies score (WFNS)6 or Glasgow Outcome Scale (GOS)7 can also be considered as 

biomarkers, as they rely on the evaluation of the patient with precise definitions, 

leading to robust and objective assessments. Finally, the kind of biomarker that is 

the  most  studied  in  “omics”  research  groups  is  the  measurement  of  the 
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concentration  of  proteins  or  other  compounds  (such  as  metabolites  or  gene 

transcripts)  in  biological  fluids  (blood,  urine)  or  tissue  samples  collected  from 

patients4.  This list  is  far  from exhaustive and countless measurements have been 

proposed as biomarkers.

The target of the measurement of a biomarker is to make a useful prediction about  

the classification of the patient. Typically, one aims at determining the disease status 

of the patient (stroke or control8, early or late stage of a disease9, etc.), monitoring 

the efficacy of a treatment4 or predicting the future outcome of a patient10. In any 

case, using the biomarker values one would like to split the patients in two classes 

according  to  the status  of  interest.  For  the  purpose  of  the  analysis,  patients  are  

typically labeled with  class labels according to a known test that was assessed with 

certainty, called gold standard. Future patients will be classified without the need to 

measure  the gold  standard.  The rare cases  where  more than two classes  exist  is  

called multiclass classification, and is not discussed in this manuscript.

Since proteomics appeared in the 1990s11, one of its main field of investigation has 

been  the  search  for  biomarkers12.  Shotgun  proteomics13,14 is  still  the  most  used 

workflow. In short, the proteins in the sample are cleaved after separation by gel 

electrophoresis or before separation by liquid chromatography, and then  analyzed 

with mass-spectrometry. Bioinformatics software then identifies the peptides and 

proteins from the mass spectra15,16.

This  methodology has been applied to many biomarker  studies.  Listing them all 

would  be  out  of  the  scope  of  this  introduction.  Regarding  brain  diseases, 

cerebrospinal  fluid  (CSF)  has  been  a  biological  sample  of  choice.  Zhang  et  al. 

discovered potential biomarkers of ageing17. Relevant to stroke diseases, Lescuyer et  

al. and Burgess et al. compared ante- and post- mortem CSF to discover biomarkers 

of brain injury18,19.  Plasma, although easier to collect from the patient,  is  a much 

more  complex  sample20.  Progress  has  been  made  to  discover  biomarkers  in  this 

sample  21,22 with either sample fractionation23,  affinity-enrichment of peptides24 or 

abundant protein depletion25.
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Another  popular  way  to  reliably  measure  the  concentration  of  proteins  are 

immunoassays. Enzyme-linked immunosorbent assays (ELISA) have long been the 

standard  method  in  this  regard26.  It  has  two  main  limitations.  First,  it  requires 

working  antibodies,  which  are  difficult  and  expensive  to  produce,  limiting  their 

usefulness for screening purposes; second, only one sample can be measured at a 

time, and as a result more time is required and more sample is  consumed when 

several  proteins  must  be  measured.  Several  methods  have  been  developed  to 

circumvent one or both issues.

1.2 Multiplex technologies for the measurement of protein 
biomarkers

To cope with the many biomarkers discovered with proteomics techniques, many 

instruments have been developed to titer several proteins in a biological sample at 

once using mass spectrometry (MS) or antibody-based techniques. 

Mass spectrometry especially when used in shotgun proteomics does not allow the 

consistent identification (and hence quantification) of a given protein across several 

samples. In samples where the protein is in lower concentration, the protein may 

not  be  identified  at  all.  In  addition,  mass  spectrometry  is  not  a  quantitative 

technique  and  it  is  not  straightforward  to  obtain  comparable  quantitative 
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information from two different samples even in the same conditions27. Nevertheless, 

several techniques have been developed to overcome these issues. 

With isobaric labeling with tandem mass tags (TMT) or isobaric tag for relative and 

absolute  quantitation  (iTRAQ),  peptides  are  tagged  and  the  samples  merged  to 

provide  information about  the  relative  concentration  between two patients  as  a 

ratio. It has been shown that it is also possible to use the reporter-ions as calibration 

curves to measure an absolute concentration28.  Label-free mass spectrometry also 

allows absolute quantification of proteins based on the peak area or height or the 

spectral  counting  of  identified  proteins29.  Finally,  selected  reaction  monitoring 
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(SRM), sometimes termed multiple reaction monitoring (MRM),  is  a targeted MS 

technique that seeks very specifically for a few peptides in the sample, increasing 

sensitivity over shotgun techniques, and may become the method of choice for the 

measure of biomarkers in the next few years30.

Many immunoassay techniques have been developed to accommodate the measure 

of several proteins simultaneously with higher throughput. For instance the Biosite 

Triage  Stroke  Panel  simultaneously  measures  several  biomakers  in  the  blood  of 

patients  with  ELISA31,32,33,34.  The  Luminex  (Luminex  Corporation)  is  a  device 

embedding a flow-cytometer to measure the signal on up to 500 differentially-dyed 

beads. Antibodies for the different proteins are coated on the beads and the signal 

can be mapped back to each protein. Other devices such as FlowCytomix (Bender 

MedSystems)35 or Bio-Plex (Bio-Rad Laboratories) are based on the same technology. 

With  planar  array  assays,  such  as  MULTI-ARRAY  (Meso  Scale  Discovery),  A2 

(Beckman Coulter) or FAST Quant (Whatman Schleicher & Schuell BioScience), the 

antibodies are coated on specific positions of a 2-dimensional array35.

In short, the measurement of multiple proteins in a single assay is now a routine 

procedure,  even though new developments are still  likely  to arise.  The challenge 

now resides in the statistical analysis of this amount of data which is the subject of  

the next section of this manuscript.
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2 Statistical evaluation of biomarkers

To assess its usefulness, a biomarker must be evaluated with statistical methods. The 

attribution of a patient to the positive or negative class is related to a cut-off (or 

threshold) as represented in  figure  1. With this cut-off, a contingency table can be 

built  (table  1),  and performance such as sensitivity and specificity (table  2),  which 

evaluate the usefulness of the biomarker for clinical application, can be measured. 

When the cut-off is not known a priori, a ROC curve can be built to choose the best 

threshold  for  a  given  application  or  to  compare  the  performance  of  different 

markers. Finally, statistical tests will ensure that an apparent good performance is 

not due to random variations caused by the sampling of the cohort. These tests can 

be performed either on the ROC curve or on the contingency table.

2.1 Contingency tables

A useful biomarker is a measure whose distribution is different between two classes 

of patients, with the class labels attributed with a gold standard. This is represented 

in figure 1. We can see the distribution of biomarker values for the positive patients 

(red) and the negative patients (green). A cut-off value is represented as the vertical 

bar. It is chosen to minimize the number of miss-classifications (false positive and 

false negative patients), represented in brown. 

Setting this cut-off allows to define four groups of patients. The true negatives (TN) 

are the negative patients correctly classified as negatives.  They are represented in 

green  on  this  figure.  The  true  positives  (TP),  corresponding  to  positive  patients 

correctly classified as positives, correspond to the red area of the distribution. Both 

are correctly classified by the biomarker, taken at the given cut-off. Some patients, 

however, are not correctly classified. They are represented in brown and fall into two 

classes: the false negatives (FN), who are positive patients incorrectly classified as 

negatives,  and  the  false  positives  (FP),  negative  patients  incorrectly  classified  as 

positives.  Depending  on  the  clinical  setting,  cut-off values  will  be  chosen  to 

minimize  the  number  of  false  positives  or  false  negatives  or  both.  The  true 

distribution of the biomarker is generally unknown. An empirical representation of 

the observed data is the histogram, as shown in figure 2.
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Typically, concentrations of the biomarker below the given cut-off will classify the 

patient in the negative class, and levels above the threshold mean the patient is in 

the positive class. However, for some biomarkers this rule can be reversed and lower 

concentrations are observed in negative patients.  In the next sections we assume 

that higher values correspond to a higher probability for the positive class.

A common way to represent the TP, TN, FP, and FN values is the contingency table 

as shown in table 1. When filled with the patient counts, it can be used to determine 

clinically useful performance measures that will be detailed in the next section.
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2.2 Sensitivity, specificity and other performance measures

The contingency table shown in the previous section, with the count of true and 

false  positive  and  negative  patients,  is  not  very  useful  per  se.  However,  it  is  an 

important  step  towards  the  computation  of  clinically  relevant  performance 

measures such as sensitivity (SE) and specificity (SP).  Sensitivity is  defined as the 

proportion of positive patients correctly detected by the test. Similarly, specificity is 

the proportion of negative patients correctly rejected by the test. Both sensitivity  

and specificity measure how well the test performs to classify a patient. On the other 

hand, positive and negative predictive values (PPV and NPV) measure the probability 

for a patient to be actually positive or negative, given the test outcome. They take 

into account the prevalence of the positive occurrence in the sample, i.e. the total  

number  of  positive  patients  compared  of  the  number  of  negative  ones.  Finally, 

accuracy is the proportion of correctly classified patients within the total sample. All 

these measures are shown in table 2.

Many  other  performance  measures  exist  and  are  computed  either  from  the 

contingency table, or from the performance measures derived from this table. For 

example,  odds  ratio  (OR)  measures  the  effect  of  a  given  increase  of  the  studied 

marker.  They  are  computed  as  (SE/(1-SE))(SP/(1-SP)).  The  likelihood  ratio 

summarizes  how  likely  positively  classified  patients  are  truly  positive  (positive 

likelihood ratio, LR+ = SE / (1 - SP)) or negative (negative likelihood ratio, LR- = SP /  

(1 - SE)), compared with control patients36. 

A totally different approach unrelated with contingency tables is to compute cost-

efficiency ratio of the biomarker. For instance, the impact on the health of patients  

can  be  measured  with  scores  such  as  the  quality-adjusted  life-years37,38.  This 

approach  requires  longer  follow-ups  of  the  patients,  but  gives  a  more  precise 

indication of the usefulness of the biomarker.

2.3 ROC curves

All the measures presented in the previous section are related to a static cut-off that 

splits the patients into positive or negative test groups. However, the cut-off value is 

not always known  a priori.  Even in the case where the optimal threshold value is 
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known, one may want to tune the trade-off between sensitivity and specificity to 

adjust to the clinical needs that may require higher values of sensitivity or specificity, 

at the expense of the other. A receiver operating characteristic (ROC curve) is a plot 

that  displays  all  possible  cut-off values,  with  the  associated  sensitivities  and 

specificities. A ROC curve is shown in figure 3, corresponding to the data of figure 1. 

Point A corresponds to the (sensitivity, specificity) of the cut-off shown in figure 1. It 

matches the point with the highest Youden's J statistic 39 or the point that lies closest 

to  the  perfect  classification  at  100%  sensitivity  and  specificity40,  with  possible 

adjustments41.

A  common and useful  performance  measure that  can be derived from the ROC 

curve is the area under the curve (AUC). With empirical ROC curves the AUC can be 

computed  with  the  trapezoidal  rule42.  It  can  be  shown  that  a  convenient 

interpretation of the AUC is “the probability that the classifier will rank a randomly 

chosen  positive  instance  higher  than  a  randomly  chosen  negative  instance42.” 

Consequently, higher AUCs correspond to better discrimination of the biomarker 

between the two classes. An AUC of 0.5 means that the discrimination is random 

and that  the positive  and negative distributions  completely  overlap.  Rather  than 

estimating the prevalence and the cost of miss-classifications, a simple way to shift 

the threshold toward higher sensitivity or specificity is to compute only a part of the 

AUC (partial  or pAUC),  limited to the portion of sensitivity or specificity that  is 

acceptable for the application43. 

ROC curves allow to dynamically choose a cut-off based on the clinical trade-offs. 

For  instance,  one  may  shift  the  cut-off slightly  to  the  left  to  achieve  a  better 

specificity,  at  the expense of  a  lower sensitivity.  This  is  the case  of  threshold B, 

which has the highest sensitivity for at least 90% specificity. If a high sensitivity is of 

prime importance, the cut-off can be shifted to the right, at the expense of a lower 

specificity. This shift can be computed automatically with the prevalance and costs 

of the different kinds of miss-classifications, for example with the formulas given by 

Perkins et al.41. With the partial AUC approach, the threshold will then be chosen to 

fall within the region of interest.
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2.4 Statistical tests

We have seen several measures of biomarker performance. Once they are computed, 

statistical tests must be performed to ensure that their  apparent efficiency is not 

caused by random variation due to the sampling. Because biological data is generally 

not  normally  distributed,  non-parametric  tests  are  the  method  of  choice44.  Two 

kinds of tests can be performed: the univariate evaluation of the biomarker, and the 

multivariate comparison of two biomarkers.

Univariate  methods  look  at  one  biomarker  independently.  They  evaluate  if  its 

expression is different between the two studied groups. Mann-Whitney U test45, a 

non-parametric equivalent of Student's t-test, is a test to compare the median of a 

continuous biomarker between the two groups. Indeed, this test is equivalent to the 

AUC46. Finally, Fisher's exact test47 or similar tests48 can assess the significance of a 

contingency table.

Unlike univariate tests, the goal of multivariate tests is to compare the performance 

of two or more usually correlated (or paired) biomarkers, for example based on the 

ROC  curves.  Parametric  tests  make  use  of  the  binormal  distribution  (two 

overlapping normal distributions)49.  While this assumption has been shown to be 

rather robust to deviations from the normality50, it seems safer to free ourselves from 

the binormal distribution. In 1983, Hanley and McNeil proposed a semi-parametric 

test51, and in 1988, DeLong  et al. proposed a fully non-parametric test to compare 

two or more ROC curves52. This latter test is still the method of choice today, and is 

implemented in a number of software. Other tests have been proposed to compare 

AUCs53,54,  or  the  shape  of  paired55 or  unpaired56 ROC  curves.  For  partial  AUCs, 

bootstrap  or  permutation  tests  can  be  employed,  although  they  are  not  widely 

implemented in statistical software57.

3 Panels of biomarkers

The  basic  measurement  of  the  usefulness  of  a  biomarker  is  its  performance 

estimated with sensitivity and specificity,  which must be as high as possible.  For 

instance for Alzheimer’s  disease,  it  has  been determined that an ideal  biomarker 

should  display  at  least  80%  sensitivity  and  80%  specificity58.  While  this  limit  of 
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usefulness is different in the context of each disease, biomarkers analyzed separately 

often  suffer  from  insufficient  sensitivities  and  specificities.  Therefore,  panels  of 

biomarkers have been proposed as a potential tool to improve the classification of 

the patients.

3.1 Basic definition

Combining biomarkers is an application of supervised machine learning. The goal is 

to build a model integrating multiple inputs (levels of the biomarkers and clinical  

information) into a single output (the patient classification). The model is learned or 

trained from known examples, in which the class labels (associating patients to one 

of the two classes) are known. A useful and efficient model is then able to generalize 

from the training sample, in order to be able to predict the classes of new patients  

who  have  never  been  seen  before59.  The  choice  of  the  method  depends  on  the 

characteristics of the dataset to be analyzed. Depending on the shape of the class 

boundaries and on the number of training examples, a method providing a linear 

separation may or may not be adequate.

Many different combination methods exist. They are described in detail in section 

3.3. They differ by several factors: the algorithms applied to transform the input into 

the output, the method employed to determine the parameters, and as a result the 

shape  of  the  separation  boundaries  they  are  able  to  achieve.  Threshold-based 

methods associate each predictor included in the panel with a threshold. Each of 

them  corresponds  to  a  separating  hyperplane  in  the  marker  value  space 

perpendicular to the marker axis where the threshold is applied. Decision trees apply 

different decisions in a hierarchical tree structure. Regression methods such as linear 

or logistic regression models apply a regression formula of the form y = Xβ+ε. The 

parameters  β and ε are  fitted with least squares or maximum likelihood methods. 

Finally, more complex methods such as support vector machines or neural networks 

also exist. They are usually applied to produce more complex separations in space, at 

the expense of a higher risk of overfitting. Many other methods have been developed 

over time, and it would be outside the scope of this introduction to describe them  
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all. We will only outline those that have actually been used to combine biomarkers, 

and show a few examples of their usage for the combination of biomarkers.

Before combining the biomarkers, one needs to select the features or variables that 

will be included in the model. This step is named feature selection and is discussed 

in  the  next  section.  Sometimes  it  is  performed  directly  by  the  model  training 

algorithm and is therefore unattended.

3.2 Feature selection

Feature selection is the selection of the set of biomarkers or  features that will  be 

included in the panel. It is is of critical importance in high-dimensionality problems 

such  as  microarray  or  mass  spectra  analysis,  but  becomes  less  crucial  in  lower 

dimensional biomarker combination studies where only a few markers are studied. 

Feature  selection  consists  in  the  selection  of  a  few  biomarker  or  clinical 

informations to include in the model. The use of feature selection in bioinformatics 

has been extensively reviewed60,61.
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Feature  selection  methods  can  be  classified  in  three  categories:  filter  methods, 

wrapper methods and embedded methods60. Filter methods apply a simple filter on 

the  features  and  select  those  that  best  meet  the  criterion,  disregarding  the 

classification method that will be employed. In wrapper methods, the selection is 

wrapped directly around the classifier,  providing a better accuracy of the feature 

selection. With embedded methods, the selection is performed directly within the 

training process.  Finally,  hybrid  methods can also be defined as  an intermediary 

between filter and wrapper methods62.

Filter  selection  methods  can  be  further  separated  in  two classes:  univariate  and 

multivariate.  Univariate  filters  look  at  each  feature  separately,  ignoring  the 

correlation and correlations with the other features. As they are unrelated with the 

classification algorithms,  they ignore the dependencies between the features that 

can have a large effect in the classification, and often produce worse classification 

accuracy. Multivariate  filters on the other hand take into account the interactions 
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between  the  variables,  but  they  still  ignore  the  interactions  specific  to  the 

classification method60.

In  the  field  of  biomarker  combination,  Hilario  and  Kalousis report several 

applications61.  Baggerly  et  al. reduced  an  initial  60  831  m/z  peaks  from  mass-

spectrometry  to  506  peaks  and  then  five  features  with  various  feature  selection 

techniques63. Petricoin  et al. wrapped a genetic algorithm around a self-organizing 

map  for  mass-spectrometry64.  Genetic  algorithms  are  also  frequently  wrapped 

around support vector machines (GA/SVM), for instance by Peng  et al.65.  Another 

very popular feature selection technique is  random Forest66,67.  By creating a large 

number of decision trees, it is possible to extract the most frequent split-points and 

thus the most interesting variables.

Once the features have been selected, the combination algorithm can be applied. We 

will now review the main methods available to do this.

26



3.3 Combination methods

Threshold-based methods
Because the determination of a thresholds (or cut-offs) is the most common way to 

analyze a biomarker, it is intuitive to apply a similar kind of analysis to panels. With 

threshold-based methods, a set of thresholds (one for each feature) is selected. The 

panel value is the count of biomarker measures exceeding the respective thresholds. 

A  more  formal  definition,  together  with  an  algorithm  to  select  the  features 

thresholds, is given in chapter 4. This method is employed mostly with ELISA and 

clinical  data,  where  the  targets  are  known  and  measured  sufficiently  reliably  to 

determine  a  threshold.  Threshold  panels  have  two  main  advantages:  once  the 

threshold values are determined the results are straightforward to calculate, and the 

simple boundary structure (figure 4) significantly limits the risk to over-fit the data.

The main challenge with this method is to determine the set of cut-offs. This is 

usually performed in a univariate manner68,69,70,71, but attempts have been made to 

select cut-offs with multivariate methods9,10,72. For instance, Reynolds et al. developed 
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an iterative algorithm to select the thresholds72. A methodology based on exhaustive 

search with pre-filtering is presented in detail in chapter 4.

Decision trees
Decision trees are quite similar to threshold-based methods in that they determine 

cut-offs to make binary splits of the biomarkers (figure 5). However, they can create 

much more elaborate rules to  find complex boundaries. More than one threshold 

can be applied to a biomarker, and not all are necessarily evaluated. This results in 

the  partition  of  the  feature  space  into  boxes,  as  shown in  figure  5.  Several  tree 

construction methods exist,  which differ  in  the  way the tree is  grown from the 

training dataset (the selection of features and thresholds for each node),  and the 

pruning strategy. The main advantages of decision trees are the ability to directly 

classify the patients in more than two groups, and to easily combine categorical and 

continuous variables.

One  of  the  most  popular  tree  method  is  the  classification  and  regression  trees 

(CART)73,74,75.  Other  methods  include  C4.576,77,  J4878,79 or  recursive  partitioning 

(Rpart)80,81.

Several related methods have been employed for panels.  For instance, the patient 

rule-induction method (PRIM) takes a slightly different approach. Like decision trees 

it  creates  simple  boxes  in  the  feature  space.  However,  PRIM  maximizes  the 

proportion  of  positive  patients  in  the  box  rather  than  the  accuracy  of  the 

classification59,82,83,84,85.  Multivariate  adaptive  regression  spline  (MARS)  models  are 

intermediary between decision trees and linear regressions that defines piecewise 

linear functions. It was chosen by Warner et al. to combine biomarkers of potential 

harm in cigarette smokers86, and by Brasier et al. to develop a candidate panel for the 

detection of dengue hemorrhagic fever87. 

Decision  trees  can  be  combined  with  boosting  algorithms  to  improve  the 

classification  results.  A  famous example  of  this  integration  is  the  random forest 

algorithm88.  For  example,  it  has  been  applied  to  the  prediction  of  dengue 

hemorrhagic fever89 and for colorectal cancer90. As mentioned previously, they also 

frequently serve to select features in large datasets66,67.
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Linear regression methods
Logistic  regression  is  especially  popular  in  medical  research,  where  it  is  widely 

employed  to  model  risk  factors  rather  than  as  a  combination  method  for  the 

classification of new patients91,92. It is appreciated for its simplicity and robustness. It 

is based on a clear statistical formulation, and the solution is globally optimal. It can  

deal with interactions to model nonlinear class boundaries, but this requires a priori 

knowledge about the structure of the data. The resulting separation is a straight,  

diagonal line as shown in figure 6.

Logistic regression can combine continuous or categorical data, either biomarkers or 

clinical information. For example,  Visintin  et al. combined only biomarker data93, 

while Welsh et al. combined protein biomarkers with clinical data94 and Wicki et al. 

combined clinical information only95. Logistic regression is often employed together 

with other combination methods. For instance, Reynolds et al. and Montaner et al. 

used both logistic regression and a threshold-based method70,72. Similarly Reddy et al. 

compared the performance of the Logical Analysis of Data (LAD) methodology with 

logistic regression and other methods76.

Several  methods  are  derived  from  logistic  regression.  For  instance,  Nolen  et  al. 

applied additive logistic regression for the early detection of lung cancer96, a method 

inspired by boosting97.  Another algorithm is the Metropolis-Monte Carlo method, 

which  has  been  applied  by  Yurkovetsky  et  al. to  the  early  detection  of  ovarian 

cancer98, and by Nolen et al. for lung cancer, among other methods96. The score is a 

linear combination of the biomarkers, with coefficients estimated with Monte Carlo 

optimization.

Support vector machines
Support  vector  machines  (SVM)  are  among  the  most  popular  machine  learning 

methods,  providing a clear mathematical  model with a globally optimal solution, 

contrary to many other methods which can get trapped in local optima. While the 

class  separation  is  linear,  it  is  applied  after  a  kernel  transformation,  enabling 

complex separation boundaries (figure 7). They are mostly employed to classify high 

dimensional  datasets,  for  instance  microarrays99,100,101,102 or  mass  spectrometry 

(MALDI75,103,104, SELDI76,78,105or ESI106). For instance Prados  et al. created classifiers of 
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SELDI spectra78 to diagnose patients after a stroke event. More recently Frenzel et al. 

applied SVM to MALDI-ToF spectra to predict the outcome of patients with acute 

lung  injury  or  acute  respiratory  distress  syndrome75.  In  both  cases,  no  precise 

biomarker was identified, even though Prados  et al. could target the few especially 

interesting peaks78. Other efforts have also been made in this domain107.

SVM  are  normally  not  employed  to  combine  a  small  number  of  validated 

biomarkers. An exception to this rule is the work by Wild et al. who applied SVM to 

combine  ELISA  data  in  order  to  classify  patients  suffering  from  rheumatoid 

arthritis108. However, they used SVM only to challenge the regularized discriminant 

analysis.

A strong expertise is required for the successful application of SVM. The choice of 

the kernel type and parameters as well as error penalties is critical to avoid over-

fitting  and  produce  a  generalizable  model109.  These  parameters  depend  on  the 

dataset  itself  and  cannot  be  pre-set  in  a  software.  Therefore,  a  nested  cross-

validation scheme110 or other bias-correction methods111 must be applied.

Neural networks
Artificial  neural  networks  (ANN)  are  powerful  classification  models  that  can 

combine biomarkers in a nonlinear manner. They are based on the association of 

network units with weights into a series of input, hidden and output layers with an 

algorithm called perceptron59. While they are very powerful models, it is difficult to 

extract biological knowledge from them.

Examples of ANN usage include the detection of women with high risk to develop 

an ovarian cancer by Zhang  et al. and Donach  et al.112,113, the and detection of lung 

cancer  by Nolen et al. and Flores-Fernández et al.96,114.

Others
Several other supervised classification methods exist.  With naive Bayes classifiers, 

the  probability  to  belong to  a  class  is  computed  based  on  parameters  estimated 

independently on all the predictors115. It has been applied by Ralhan et al. to detect 

patients  with  head-and-neck  squamous  cell  carcinomas  with  proteins  identified 

with mass spectrometry after labeling with isobaric tandem mass tags116. Nolen et al. 
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applied it together with other methods to combine 81 serum proteins for the early 

detection of lung cancer96. 

Regularized discriminant analysis (RDA) is  a linear combination method that can 

deal  with  strongly  correlated  data59.  Wild  et  al. applied  RDA  to  combine  three 

markers in a panel for detecting patients with rheumatoid arthritis108. Flores-Flores-

Fernández et al. appied LDA in in comparison with a neural network approach 114 and 

Wu et al. with several other classification methods103.

Together with their Triage Stroke Panel, Biosite developed the Multimarker Index 

(MMX), a proprietary algorithm to combine the four measured biomarkers into a 

single result33,34.

Torkaman  et  al. developed  an  innovative  approach  based  on  cooperative  game 

theory77. They employed this new method to classify different types of leukemia.

Cox proportional  hazards model is  especially well  suited to survival  analysis.  For 

instance, Ring  et al. combined biomarkers for the diagnostic of estrogen receptor-

positive  breast  cancer117,  and  Damman  et  al. predicted  the  mortality  after  heart 

surgery118.

Knickerbocker et al. combined both protein microarray and clinical data of patients 

after  renal  replacement  with  generalized  additive  models  (GAM)119.  The  same 

method was also applied by Brasier et al. to diagnose dengue hemorrhagic fever89.

As we can see, a large variety of combination methods are available. The choice of  

one or another is  essentially a matter of personal preference, combined with the 

knowledge of the data. In the end, it is possible to build a model that displays an 

exquisite performance on the training data. However, it is only useful if it can be 

generalized on independent datasets. The validation step makes sure it is the case.

3.4 Validation

The last step in the statistical validation of a panel of biomarkers is to evaluate its 

performance on an independent dataset, to avoid the over-fitting, namely the over-

optimism that follows the evaluation of the performance of a model on the same 

dataset that was employed to train it (also designed as reclassification). While the 
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best possible validation is to collect an independent test cohort62, preferentially in a 

randomized controlled trial to assess the impact on the health of patients38, it is not 

always  possible  to  achieve  this  due  to  time  and  cost  constraints120.  Fortunately, 

several computational methods make it possible to obtain an unbiased evaluation of 

the performance of a model even without a dedicated test set121.

Cross-validation  is  a  purely  computational  method.  It  functions  by  splitting  the 

dataset into k parts of equal size, and sequentially using k-1 parts to train the model 

while keeping one part aside as test set. The performance estimate is the mean of the 

performance of the individual k parts. The main drawback of this method is that the 

size of the training set is slightly reduced, resulting in a worse classification model, 

overestimating the classification error in some scenarios. In addition, the learning 

step must be repeated k times, which can prove computationally intensive with high 

values of k. The most extreme case is leave-one-out cross-validation with k = n (the 

number of patients) requiring to apply the learning method n times but providing a 

nearly unbiased estimate of the method's performance59.

Bootstrap is another purely computational method. Instead of splitting the data, it 

randomly selects observations with replacements, thus generating a new sample of 

the  same size  as  the  original  one.  Approximately  63% of  the  sample  is  selected, 

leaving 37% of the observations as test set, independent from the 63% employed to 

train  the  model.  However,  the  training  sample  contains  repeated  measures  and 

complex correction methods must be applied59.

If the sample size is sufficient, it is possible to leave a subset of the sample aside and 

use it as a validation set72,93. As for the cross-validation, this means that the size of 

the training set is significantly reduced. Consequently, the training of the model is 

not  optimal,  resulting  in  pessimistic  performance  estimates.  In  addition,  fewer 

observations are available in the test set,  leading to a less precise estimate of the 

performance of the model.

Finally,  permutation  tests  assess  whether  the  results  of  the  classification  are 

significant or not. The labels of the patients are randomly shuffled and the training 

method is applied. If the classification results on the random dataset are comparable 
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to those obtained in the original sample, it is a strong indication that the classifier 

over-fits  the  data122,123.  However,  this  method does  not  allow estimating the  true 

classification performance, and therefore its usefulness is rather limited.

As  a  result,  cross-validation  is  the  most  popular  validation  method  in 

bioinformatics59,124, although it is often used in a non-standard manner124.

4 Goals of the thesis

In this thesis, we hypothesized that the information about the class of the patient 

was  complex  and  could  not  be  deduced  from  the  measurements  of  a  single 

biomarker.  Therefore,  combining  several  biomarkers  into  a  single,  multiplexed 

output could lead to an improvement in the classification of the patients. Machine 

learning techniques will be applied to datasets relevant in the lab, especially related 

to brain diseases.

The specific goals of this thesis were three fold.

4.1 Propose a framework to easily create white-box panels of 
biomarkers

Early discussions with medical  practitioners quickly made it  evident that  a clear, 

understandable  way  to  combine  biomarkers  would  be  preferred  over  a 

mathematically more complex approach. The reasons are two-fold:

1. Understanding  the  underlying  function  of  a  system  is  the  goal  of  all  

biologists.  Medical practitioners also want to understand how the patients 

function.

2. Previous  research  with  black-box  approaches64 have  turned  to  be  highly 

ineffective when applied to independent datasets125. While the reason may lie 

in the analytical procedures rather than in the combination method in itself,  

a transparent approach where every component of the model can be analyzed 

and understood would make it easier to detect such bias.

Therefore,  the  main  goal  of  this  thesis  is  to  develop  an  approach  where  the 

biomarkers are combined in a transparent, interpretable way.
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4.2 Study the performance of the proposed panels

Once the method and the panels have been established, the second task is to ensure 

that the panels and the methods are efficient enough. We need to ensure that the 

panel provides an improvement over the biomarkers  taken individually,  and also 

that it provides reasonable performance compared to other combination methods 

(white- or black-box). Comparing panels with its constituting biomarkers is usually 

not performed in most biomarker combination studies and we will have to find the 

most accurate way to do it.

4.3 Build interfaces to be used by the scientists in the lab

While programming and command-line interfaces are powerful tools for computer 

scientists and bioinformaticians, they are worthless to anyone lacking programming 

skills. My special position of embedded bioinformatician within a wet lab gives me 

the responsibility to make all the tools available to those researchers who do not 

have the technical skills to use command-line or programmable bioinformatic tools. 

Therefore,  the  most  important  tools  developed  during  this  thesis  will  be  made 

available with graphical user interfaces (GUI).
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
Bioinformatics for protein 

biomarker panel classification: 
What is needed to bring 

biomarker panels into in vitro 
diagnostics?



This review summarizes the current usage of combinations of biomarkers for clinical 

purposes, resulting from the increasing number of protein biomarkers discovered by 

proteomics  techniques.  Most  of  these  biomarkers  display  low  sensitivities  or 

specificities, preventing their translation into in vitro diagnostics and, consequently, 

to clinical practice. This observation led to the idea that combining these proteins 

into panels of biomarkers could improve their clinical usefulness, which represents 

the main hypothesis of this thesis.

This  chapter  presents  the  state-of-the-art  in  this  field.  It  summarizes  the  main 

methods employed, starting with very basic statistic to advanced machine learning 

methods,  and outlines their  strength and weaknesses.  It  discusses  the challenges 

raised by this kind of analysis,  namely over-fitting and validation issues resulting 

from the high dimensionality of the datasets, the low number of patients and poor 

reproducibility of proteomics techniques.

I fully wrote this review with help and input from the co-authors.
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Background

As part of clinical practice, it is common to mea-
sure the concentration of a protein, known as a 
biomarker, in a biological sample to diagnose a 
disease, predict the outcome early or monitor a 
therapy. Examples of commonly accepted bio-
markers include troponin I for detecting acute 
myocardial infarction, prostate-speciic antigen 
for the screening of prostate cancer, glycated 
hemoglobin for the control of long-term gly-
cemia and C-reactive protein for assessment of 
inlammation. Proteomics techniques, such as 
2DGE [1,2] and mass spectrometry [2–5], have 
led to the discovery of numerous bio markers, 
most of which are not currently available to 
medical practitioners. Possible explanations 
for this gap between proteomics research and 
routine practice are technical (e.g., the time 
and huge costs required to validate these mol-
ecules, as well as the accuracy of assays not 
being high enough to be translated directly into 
clinical practice) and biological (e.g., inter- and 
intra-individual variability).

When several biomarkers are measured, 
they are often considered separately, irrespec-
tive of the additional information contained in 
their joined interpretation. Combining several 

biomarkers into a single classiication rule helps 
to improve their classiication accuracy and, 
therefore, their clinical usefulness. Hereafter, we 
will call such a combination a panel. Potentially, 
a panel could even combine clinical parame-
ters, such as age, sex, physiological constants or 
clinical scores, with biomarkers [6]. Similar to a 
single marker, a panel allows us to answer dif-
ferent clinical questions. Apart from increasing 
accuracy, biomarker panels help in the study 
of different pathophysiological pathways and 
shed light on diseases from different angles. 
For instance, in the context of a brain damage 
condition (e.g., aneurysmal subarachnoid hem-
orrhage), Turck et al. recently demonstrated that 
a combination of brain parameters associated 
with a clinical score and a cardiac biomarker 
could predict 6-month outcomes better than the 
biomarkers taken individually could [7]. In the 
same manner, Hainard et al. proposed a combi-
nation of inlammatory cytokines and one brain 
damage marker [8]. In both cases, the combina-
tion of different kinds of biomarkers improved 
the classiication.

In contrast to the traditional single-analyte 
interpretation, several new challenges arise, 
which could also explain why panels are not yet 
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widespread. First, appropriate methods are required to combine 
information from multiple biomarkers. These methods must be 
eficient and yield correct patient classiication, but they must 
also be comprehensible to medical practitioners in order to gain 
acceptance. Second, the risk of overitting the data is increased 
because of the higher dimensionality [9–11]. A careful validation 
is required to ensure that a panel truly performs better than indi-
vidual biomarkers, hence avoiding raising false hopes. Finally, 
appropriate experimental design [12,13] and validation are the most 
important factors for ensuring the quality of the results.

After a short overview of in vitro diagnostics (IVD), we will 
review recent papers that describe combinations of biomarkers 
and/or clinical parameters in panels, and examine whether they 
addressed these new challenges and, if so, how. We mainly focus 
on protein biomarker panels but also include related work on 
analyzing protein or gene expression microarray and protein mass 
spectrometry data where we deem it relevant for protein panels. 
We will also review methods that allow the validation of obtained 
models and their performance, as well as the strategies available 
to compare different panels and their combinations. This review 
addresses clinical researchers who seek a basic introduction to 
statistical methods and the pitfalls of biomarker-panel research 
and statisticians who would like to learn more about recent work 
and the clinical aspects of this subject.

From discovery to IVD

In vitro diagnostics encompasses any type of assay performed on 
a patient sample in a controlled environment to answer a clinical 
question, including diagnostic, prognostic or monitoring tests. It 
typically includes point-of-care tests, which are quick and simple 
assays performed beside the patient with portative equipment, 
and laboratory tests, which are performed by trained personnel 
in dedicated clinical chemistry laboratories.

Vitzthum et al. reviewed the need in proteomics to push dis-
covered molecules into IVD [14]. The crucial points are that the 
classiication must be reliable and provide information that is 
valuable for decision making; measurements must be both exact 
and robust, and the test accuracy must meet suficient (positive 
or negative) predictive values.

The target performance of IVD tests must be chosen according 
to the clinical question. As pointed out by Dodd and Pepe, “large 
monetary costs result from high false-positive rates” [15]. Similarly, 
failure to diagnose a disease can dramatically impact on a patient’s 
health, which may even lead to death. Therefore, IVD (single 
biomarker or panel) as a helpful clinical practice must display 
suficient discriminative power and answer a well-deined ques-
tion. In other words, one should focus on high sensitivity and/or 
speciicity or high predictive values rather than global accuracy.

An IVD test aims to determine the state of the patient. For 
biomarker tests, a decision threshold (also known as a cut-off) 
is usually chosen. Any value below the cut-off will indicate that 
the test result is negative, while a value above the threshold will 
be deemed as a positive result. The test result, together with the 
observed true outcome, will deine the sensitivity and speciicity 
(see TABLE 1 for deinitions).

Predictive tests can be split into two categories: ‘rule-out’ and 
‘rule-in’ tests. Rule-out tests reject negative patients while avoiding 
false negatives. In these tests, the sensitivity is of prime importance, 
as is the negative predictive value. However, the level of false posi-
tive must be kept low enough in order to preserve both speciicity 
and positive predictive value at acceptable levels. When the test is 
applied to asymptomatic patients, it is termed a screening test. A 
negative result to a screening test implies that the patient is highly 
likely to be healthy, while a positive result only means that more 
investigations are required. For example, in the context of human 
African trypanosomiasis (HAT), a potential rule-out test would 
be applied to exclude the patients not infected by the parasite. All 
patients with a negative test would then be classed as free of the 
parasite, with a very high conidence. Similarly, rule-in tests (also 
called conirmatory tests) try to include only positive patients and 
generate as few false positives as possible. The speciicity and posi-
tive predictive values must be very high. A rule-in test applied in 
the HAT ield would select only patients with parasites in the brain 
(stage 2 of the disease), who would be subsequently subjected to 
a very toxic treatment. Patients without brain infection (stage 1) 
must be excluded, because they could potentially be killed by the 
inappropriate medication [8].

Predictive values (negative or positive) need to take the class 
prevalence into account since even a test with a very high speciicity 
could have a low positive predictive value. If the prevalence of the 
disease is very low, there would be a larger number of false posi-
tive, only because of the larger number of controls. This property 
makes predictive values more dificult to compute than speciic-
ity or sensitivity. Despite this complication, predictive values are 
usually more valuable because they express the probability of the 
patient being truly positive or negative for a given group of patients.

Commercial panels

From a commercial point of view, McCormick showed how both 
pharmaceutical companies and medical practitioners could proit 
from biomarkers and biomarker panels to predict the safety of 
a treatment, identify risk and responder candidates, and moni-
tor therapies [101]. However, they pointed out that the acceptance 
of biomarkers is hindered by the lack of data sharing (owing to 
technical or strategic reasons), as well as insuficient validation 
and targeting.

In the USA, medical devices (including IVD) must obtain 
approval by the US FDA. Hackett and Gutman highlighted the 
dificulties that are raised by the combination of several markers 
and the use of statistical models [16]. FDA review procedures for 
device acceptance focus on the test result, and a simple model can 
be accepted at the condition that it is independently validated.

To our knowledge, only the Biosite® company sells panels of 
protein biomarkers for blood samples. The Triage® Stroke Panel 
simultaneously measures four markers (namely matrix metallopro-
teinase 9, brain natriuretic peptide, D-dimer and S100b) and com-
putes a multimarker index using a proprietary algorithm. Two cut-
offs are deined, associated with a high or low risk for the patient 
having a stroke, while patients in the intermediate region require 
further investigation. It was accepted by the FDA for premarket 
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approval application in 2005, was withdrawn by the manufacturer 
1 year later to allow further clinical studies, but it was recently 
reintroduced. The Triage Stroke Panel was applied by Vanni et al. 
in a neurological emergency service to discriminate patients with 
or without stroke among those suspected of having stroke [17]. 
Sibon et al. compared it with an established neurological scale 
evaluated by nurses [18]. Brouns et al. analyzed only the D-dimer 
measurement to compare it with the assay of another manufacturer 
to discriminate small-artery and large-artery acute ischemic stroke, 
but they did not make use of the multimarker index score [19]. 

The same company previously marketed in 1999 a Triage® 
Cardiac Panel for the diagnosis of cardiovascular diseases. This 
test measures three proteins, known as cardiac markers (namely 
creatine kinase MB, myoglobin and troponin I) [20]. However, 
it cannot truly be called a panel as the measurements are not 
combined into a single inal score.

Applied Genomics sells several immunohistochemistry pan-
els. Tissue arrays are stained, and each staining is assessed in a 
binary manner. The results are then combined with a Cox propor-
tional hazards model into a single score stratifying patients into 
low, medium or high risk. One of the available panels provides 
prognostic information for breast cancer outcome [18].

Tools for panels

History

In terms of biomarkers, a panel is the combination of more than 
one variable into a single classiication rule. The idea of combin-
ing several medical parameters to obtain an improved patient clas-
siication is not new. In psychiatry, Hoffer and Osmond applied 
a combination of neuropsychiatric variables in the early 1960s to 
distinguish schizophrenic patients from normal individuals [21]. 
They deined 145 questions that could be answered by true or 
false, covering perceptions, thoughts and feelings. Complex algo-
rithms would then compute several scores. However, the set of 
questions and the scoring algorithms were not justiied. Later, in 

1988, the World Federation of Neurological Surgeons (WFNS) 
score was deined to assess patients’ neurological status [22]. It 
consists of the combination of three easy-to-assess clinical vari-
ables. Eye, verbal and motor responses are evaluated on a scale 
ranging from one to four, ive and six, respectively. An interme-
diate score ranging from three to 15 is computed, and the inal 
score depends on the range of this intermediate score and the 
presence of a motor deicit.

In the ield of biomarkers, Woolas et al. showed the potential of 
using several serum markers together in 1993 [23]. They observed 
that most of their patients with stage 1 ovarian cancer were posi-
tive for at least one of the three markers they tested. However, they 
did not use this observation to make a true statistical combina-
tion. In 2000, Hill et al. were among the irst to report the use of 
a panel of protein biomarkers [24]. They tested four biomarkers, 
and they observed that 93% of their acute ischemic stroke patients 
were positive for at least one of the four markers of the panel.

As detailed in the later section ‘Classiication using panels’, 
panels can also combine biomarkers and clinical parameters. 
However, prior to discussing the various approaches for panel 
classiication, we briely review some important data preprocess-
ing and data-normalization steps, which are performed prior 
to classiication.

Preprocessing

Normalization & reproducibility

Several types of errors can disturb the results of biomarker con-
centration measurements and mitigate reproducibility. It has been 
shown that sample collection from different centers and by dif-
ferent nurses as well as sample handling variability (i.e., sample 
container, time to freezing and storage temperature) and instru-
mental errors can lead to measurement variations [25,26]. When 
dealing with high-dimensional mass spectra, reproducibility of 
the experiments becomes a problem, and it has been shown that 
proper sample and data processing, as well as feature selection, 

Table 1. Clinical classiication deinitions.

Word Common 
abbreviation

Formula Deinition

Prevalence Frequency of the positive occurrence in the studied population

Rule in (conirmatory) A test performed in an attempt to conirm the presence of a disease

Rule out (screening) A test performed in an attempt to exclude the presence of a disease

True negatives TN Negative patients correctly classiied as negatives

True positives TP Positive patients correctly classiied as positives

False negatives FN Positive patients incorrectly classiied as negatives

False positives FP Negative patients incorrectly classiied as positives

Sensitivity SE TP/(TP+FN) Proportion of positive patients correctly detected by the test

Speciicity SP TN/(TN+FP) Proportion of negative patients correctly rejected by the test

Positive predictive value PPV TP/(TP+FP) Proportion of positive tests that correctly indicate positive patients

Negative predictive value NPV TN/(TN+FN) Proportion of negative tests that correctly indicate negative patients

Odds ratio OR (SE/(1-SE))(SP/(1-SP)) Effect of a given increase of the studied marker
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are of major importance [9]. Furthermore, biological variability 
between different patients owing to sex, age, treatment, lifestyle 
and chronic diseases, or even within a single patient taken at dif-
ferent times, can confuse the ana lysis. All these sources of variation 
make it dificult to compare the results of different experiments 
and to draw conclusions.

On the experimental side, normalization methods often require 
a ‘calibration’ sample, which has constant values over all the experi-
ments [27]. Using calibration curves, concentration measurements of 
biomarkers can be adjusted for each patient and systematic offsets in 
the measurements reduced. However, only instrumental offsets can 
be reduced in this way and other offsets due to sample acquisition 
and treatment need further bioinformatics normalization.

This computational normalization equalizes the mean and vari-
ance of distributions of different biomarker measurements, mak-
ing them more comparable. A very simple normalization method 
consists of the z-score transformation, which sets the mean to zero 
and the variance to one, but otherwise does not affect the shape of 
the distribution. Yeo et al. proposed the box–cox transformation 
family, which includes the logarithmic transformation, to obtain 
distributions closer to the normal one [28]. Another normalization 
method is the quantile normalization technique, where all values 
are transformed into their corresponding normal quantiles [29]. 
However, this is an extreme normalization and the structure of the 
data can be lost in the process. Based on technical and biological 
replicates, ana lysis of variance can calculate the bias and variance 
introduced by each processing step and lead to more accurate 
comparisons [13].

Feature selection

Another important preprocessing step is feature selection, which 
is crucial in high-dimensionality problems, such as mass spectra 
or microarrays, but is less important for lower dimensional bio-
marker panels. It consists of selecting the biomarkers and patient 
parameters that will be included in the panel. The choice of the 
feature-selection method strongly depends on the classiication 
algorithm and the data [30]. It is also important to note that data 
for feature selection must not include the test data; otherwise, the 
test performance would be too optimistic. Saeys et al. classiied 
the feature-selection methods into three categories: ilter methods, 
wrapper methods and embedded methods [31]. Filter methods con-
sider only the intrinsic properties of single features independently 
from classiication. Conversely, wrapper and embedded methods 
perform the feature search at the same time as the classiier model 
is trained. In wrapper methods, the search for optimal features 
is performed by an optimization procedure, which evaluates the 
performance of a given classiier on different feature subsets. 
Embedded techniques can include or eliminate features during 
the classiier-training procedure. Such embedded techniques can 
be implemented, for example, in logistic regression, random forests, 
neural networks or support vector machines (SVMs; see later).

Several examples of feature selection are reported by Hilario 
and Kalousis [30]. Baggerly et al. used preprocessing and exhaus-
tive search and genetic algorithms to reduce an initial 60 831 m/z 
value from mass spectrometry to ilter 506 and then sets of one 

to ive features, and then applied the feature sets to linear dis-
criminant ana lysis [32]. Petricoin et al. also employed genetic algo-
rithm with mass spectrometry, but in a wrapper method around 
a self-organizing map algorithm [33].

Classiication using panels

Biomarker panels rely on a well-established ield of statistics, 
known as multivariate classiication or supervised learning. There 
is a vast amount of literature available, and much of it is sum-
marized in excellent textbooks, such as that by Hastie et al. [34]. 
The classiication task consists of attributing a class label to every 
patient by means of the vector of biomarker concentrations and 
clinical scores. In the case of two classes, this corresponds to divid-
ing the space of all possible panel vectors into two distinct regions, 
one region for every class (FIGURE 1). The way the classiier deter-
mines these regions depends on the method used. In all cases, the 
algorithms learn these boundaries from training data, that is, a set 
of panel vectors known to belong to a diseased or healthy patient. 
Once the region boundaries are ixed, the performance can be 
evaluated on equally annotated but disjointed test data.

This approach may seem fairly straightforward, but two main 
problems must be dealt with: the low number of samples in the 
training set and overitting the data. The former problem is para-
mount in many biomarker projects, since the number of patients 
is usually small (from a few to several hundred patients) compared 
with the number of markers. The patients are then only sparsely 
distributed in the panel vector space, and many parts of the class 
regions are only represented poorly or not at all in the training 
set, which makes it more dificult for the classiier to ind the 
correct regions. FIGURE 1 illustrates this problem since neither the 
upper left nor the lower right corners contain any data points and, 
considering only these training data, it is impossible to predict the 
classiier results in these regions. The latter problem is perhaps less 
severe but equally important. Since the shape and smoothness of 
the boundaries between the class regions is not known (linear 
or curved), the regions obtained from the training data might 
be wrong even if they it the training data very well, because the 
model deined in the classiier is wrong (i.e., the classiier might 
yield an arbitrarily curved boundary that is actually linear FIGURE 2). 
However, cross validation provides a means to at least partially 
mitigate this problem (see later). As a rule of thumb, the fewer 
patients there are in the training and test sets, the simpler the class 
boundaries should be to avoid overitting, even if these simple 
boundaries cannot reproduce the true boundaries correctly.

We now discuss the main methods applied to deine biomarker 
panels. Threshold-based methods and logistic regression are 
probably the most popular ones. Tree-based methods are also 
widely used, whereas SVM is a method of choice for many high-
dimensional problems. We will now detail some methods and 
show how they are applied.

Threshold-based

In threshold-based methods, a set of thresholds, one for 
each biomarker, is selected, usually in a univariate man-
ner (FIGURE 1A) [7,8,24,35–38]. Any value of a molecule below its 
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respective threshold will indicate that the test result is negative, 
while a value above the threshold will be deemed a positive result. 
In some rare cases, it can be necessary to reverse the order and to 
consider values below the threshold as positive results. The score 

of the test for a patient corresponds to the number of biomarker 
molecules, whose concentration value exceeds (or is below for 
negative biomarkers) the threshold. Similar to a majority vot-
ing, a patient is classiied positively if this score is higher than 

Figures 1. Classiication by different methods. (GSTP and H-FABP concentrations illustrated in log scale). The gray area shows the 
region where the test would be considered positive by the method. Crosses and dots represent Stage 1 and Stage 2 human African 
trypanosomiasis patients, respectively. (A) Threshold-based methods split the space into boxes. (B) Decision trees can create more boxes. 
(C) Logistic regression divides the data with a straight line. (D) Support vector machines can compute complex separations but can also 
create linear partitions similarly to logistic regression (see FIGURE 4).
GSTP: Glutathione S-transferase Pi; H-FABP: Heart-type fatty acid-binding protein.
Redrawn from from [8].
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a minimum number. To take a purely theoretical example, one 
could set a minimum of two out of ive para meters, where any 
two positive molecules of the panel would raise a positive test, 
but if only one is positive, the panel result would be negative. The 
minimal number can be chosen based on several criteria, usually 
depending on the targeted sensitivity or speciicity or by cross 
validation. It is used mostly for ELISA and clinical data but not 
in higher-dimensional problems. The threshold method has the 
major advantage that results are easy to interpret. Additionally, its 
simple boundary structure reduces the possibility of overitting the 
training data. In our view, the threshold method is well adapted 
to biomarker panel data, where class boundaries of a single marker 
can often be represented as single cut-off points.

Lejon et al. followed this approach to combine clinical and 
biochemical variables to predict trypanosomiasis treatment 
failure [38]. Thresholds were chosen on univariate parameters 
to maximize the sum of sensitivity and speciicity, and two 
parameters were retained. For the same disease, Hainard et al. 
selected a panel of two cytokines and a brain-damage marker 
to assess the disease stage of 100 patients using a multivariate 
approach [8]. The rationale was that interactions between mol-
ecules in a panel can be complex and good univariate thresholds 
are not necessarily the best thresholds in a panel. Other attempts 
have been made in this direction [36]. Vitzthum et al. also showed 
that different thresholds should be chosen for different clinical 

questions [14]. This means that if a threshold discriminates well 
between classes for one question, it may not automatically be 
accurate in other problems.

A similar technique is the patient rule-induction method [34], 
where two thresholds (lower and upper) are chosen, and a patient is 
positive only if the biomarker value is included in the range. This can 
bring out patients with particularly low values, but the clinical and 
biological relevance of such a criterion is not obvious. It was applied 
by Wang et al., but its usage seems scarce [39]. Naive Bayes is another 
similar method, in which the thresholds are separately determined 
based on statistical criteria for every feature. Ralhan et al. success-
fully applied it to proteins quantiied by MS/MS after isobaric tag 
for relative and absolute quantitation labeling on a small number 
of patients [40]. It can be extended to deal with dependent data [41].

Decision trees

Decision trees are similar to threshold-based methods, but they 
can ind more complex boundaries (FIGURES 1B & 3 & BOX 1). Different 
tree methods exist and vary in the construction of the tree from 
the training set, that is, the selection of a feature and a threshold 
for each node, and in the pruning strategy.

Classiication and regression trees (CARTs) are one of the most 
popular tree-based algorithms [42–44]. Other methods are C4.5 
decision trees [45], J48 [46], or recursive partitioning and regression 
trees (RPART). The latter allowed Ring et al. to select ive proteins 
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GSTP: Glutathione S-transferase Pi; H-FABP: Heart-type fatty acid-binding protein.
Redrawn from [8].
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out of several hundreds and combine them 
into a decision tree that was able to classify 
195 estrogen receptor-positive breast cancer 
patients into good, moderate or poor prog-
nosis [47]. However, it seemed to be depen-
dent on the cohorts to which the model was 
applied and was less predictive of outcome 
than other methods.

Trees perform well in combination with 
boosting algorithms [48], which can strongly 
improve the classiication results. The idea 
is to boost the classiication performance of 
a simple classiier (e.g., a strongly pruned 
tree) by iteratively applying it to modiied 
versions of the data, where the weight of 
the misclassiied training observations is 
increased. Each successive tree classiier is 
then forced to focus on those misclassiied 
observations, and the inal classiication 
is calculated as the weighted average over 
all tree classiiers. Trees also form the basis 
of the random forest algorithm [49], where 
classiication is obtained from a combina-
tion of trees, each built from a small but 
random subset of the features.

A basic parallel or sequential AND/OR 
way of combining tests similar to deci-
sion trees has been proposed by Vitzthum 
et al. [14]. However, there is no evidence that 
it was applied in panels. 

Logistic regression

Logistic regression is a very popular linear regression method 
in the medical ield, where the simplicity and robustness of the 
models produced is appreciated (FIGURE 1C & BOX 2). The method 
is based on a clear mathematical formulation and yields a glob-
ally optimal solution. Interaction terms can be entered to model 
nonlinear class boundaries, but this requires a priori informa-
tion regarding the structure of the data and, therefore, is not 
commonly used.

Logistic regression can combine clinical or biomarker data, 
either continuous or categorical [36,37,45,50–54]. For example, 
Visintin et al. trained several logistic regression models to screen 
ovarian cancer on several hundred patients and controls [50]. 
Although some individual biomarkers displayed a signiicantly 
lower performance in the test set, regression models were sta-
ble, denoting the robustness of the technique. Logistic regres-
sion was also applied to combine protein markers with clinical 
parameters [55] or to combine clinical variables only [56].

Support vector machines

Support vector machines (FIGURES 1D & 4 & BOX 3) are one of the most 
popular methods in machine learning. SVMs have the advan-
tage of being able to provide a clear mathematical model with a 
globally optimal solution, contrary to neural networks or others 

learning methods that can get trapped in a local optimum. It 
performs well in a large variety of tasks, and it was applied in very 
different ields, ranging from text pattern recognition to ana lysis 
of gene expression microarrays. However the underlying con-
cepts are more dificult to grasp for non-mathematicians. FIGURE 1D 
shows the result of classiication with a radial basis kernel, but 
SVMs can also ind linear or polynomial separations similar to 
logistic regression.

The SVM is preferred in higher dimensionality problems, such 
as microarray [57,58] or mass spectrometry (SELDI [45,46,59] or 
MALDI [48,60]) data ana lysis. Liu et al. combined use of an SVM 
with a genetic algorithm and obtained reproducible and fairly 
accurate results [61]. It was also used by Wild et al. to classify 
ELISA data for patients suffering from rheumatoid arthritis, 
but only to challenge the regularized discriminant ana lysis and 
conirm the results generated by the latter technique [62].

Generalized additive models

Generalized additive models allowed Knickerbocker et al. to 
combine protein microarray data with patient clinical informa-
tion to predict survival after renal replacement [6]. They added 
local polynomial functions (or splines) that allow deining 
nonlinear relationships between the variables, as well as the 
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Figure 3. The decision tree corresponding to FIGURE 1B. Each circle corresponds to a 
question. Depending on its answer, one follows the arrow to the left or right and goes 
to the next question, until a decision (square box) is reached.  
GSTP: Glutathione S-transferase Pi; H-FABP: Heart-type fatty acid-binding protein; 
S1: Stage 1 human African trypanosomiasis classiication; S2: Stage 2 human African 
trypanosomiasis classiication.
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detection of inlexion points. They trained two models sepa-
rately, one for clinical parameters and one for protein biomark-
ers, and showed that the experimental predictors could only add 
information for patients detected as being at high risk by the 
clinical predictors.

Other methods

Several other methods were shown to perform well in proteomics. 
Gevaert et al. applied a Bayesian network on gene expression 
microarray data [63]. This approach allows the integration of clini-
cal data in several manners: full, decision and partial integration. 
In full integration, the clinical and microarray datasets are merged 
and handled as a single dataset. In decision integration, two mod-
els are trained, one clinical and one with microarray data, and 
the inal decision is generated as a combination of the weighted 
probability of the clinical panel with the microarray one. Finally, 
in partial integration, the network structures are determined 
separately for each dataset and joined into one single structure 
before performing the learning step for the merged clinical and 
microarray datasets.

Regularized discriminant ana lysis is a classiication method 
that can deal with strongly correlated data [34]. It is based on linear 
discriminant analysis [48] or quadratic discriminant analysis. It 
can take into account the main effects of the markers as well as 
their interaction. Wild et al. successfully used regularized discrim-
inant analysis to combine two to three molecules in patients with 
rheumatoid arthritis [62]. For prognostic purposes, an attractive 
option is to analyze the time series, if available. James and Hastie 
proposed a classiication based on spline regression of time series 
and linear discriminant ana lysis of the regression coeficients [64].

Logical ana lysis of data is a method that inds approximations 
of subsets of observations by combinatorics and optimization. Its 
application in the medical ield had been reviewed previously [102]. 
It was used by Reddy et al. to classify 48 ischemic stroke patients 
and 32 controls, and was applied on a validation set consisting 
of 60 patients [45]. The methodology was also able to detect two 
outlier patients and showed good performance.

Reddy et al. [45] and Prados et al. [46] applied multilayer perceptron, 
a type of linear neural network, and Cox proportional hazard models. 
The latter method was used in several other studies [47,52,65,66].

‘Nearest neighbors’ inds the k nearest samples and performs a 
majority vote to decide the classiication [48]. Linkov et al. deined a 
method they called ADE+PT, which is similar to a weighted nearest-
neighbor approach [67]. There is no evidence of its application in any 
other published study.

Performance validation

Why?

Once a panel is deined, its performance must be evaluated. As 
stated earlier, overitting corresponds to the underestimation of 
the classiication error on the training set (FIGURE 2A), which can-
not be validated on an independent test set (FIGURE 2B) [34]. High-
dimensional data are especially prone to overitting, as mentioned 
in Feng and Yasui in the context of SELDI mass spectra, where a 
huge number of possible markers (peptide masses) are available [11]. 
However, depending on the classiier, it can be a serious problem 
even for low dimensional data.

Box 1. Decision trees.

• Decision trees are simple but powerful methods that split the 

feature space into a set of boxes and attribute a class (or a 

probability) to each one. FIGURE 3 displays a typical representation 

of the decision tree corresponding to FIGURE 1B

• To build a decision tree, a series of binary splits based on a 

threshold of one of the variables is performed. For each step, 

the variable that yields the best split is selected.  Every outcome 

of a test (positive or negative) creates a branch, which either 

leads to a new test or to a terminal leaf, corresponding to a box 

in the feature space. Each of the boxes is deined by the unique 

path leading to it, and it is possible to calculate a class 

probability or binary outcome within the box. The tree is then 

pruned and the less informative decision branches are removed 

to simplify the tree and avoid overitting. The number of splits 

and the minimal number of observations allowed in each 

terminal leaf must be carefully investigated, for example, by 

cross validation [34,90]

Box 2. Logistic regression.

• In its simplest form, logistic regression provides a linear 

separation of the feature space. It models the class probability 

p(+|x), that is, the probability that the n-dimensional feature 

vector, x, is classiied positively, as a sigmoidal (s-shaped) 

function:  

where  

The coeficients a
i
 must be determined from the training sample 

by means of a maximum likelihood procedure, which usually 

converges to the unique global optimum [34]. If the different 

features x
i
 are properly normalized (same mean and standard 

deviation), the coeficients a
i
 provide direct information 

regarding the importance of a feature for the correct 

classiication in the logistic regression model. It is also possible 

to expand the features by explicitly including interaction and 

nonlinear terms. For example, the feature vector 

 

could be expanded to a higher dimensional vector  

or 

The logistic regression is then applied to x’ instead of x

• Odds ratios measure the effect of a given increase of the 

studied marker. They are frequently used in relation to logistic 

regression. However, their use as a measure of performance is 

dificult [91]
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In the literature, Bhaskar et al. showed that validation is not 
performed consistently in bioinformatics [68] and Whiteley et al. 
showed how even single biomarkers can be biased if its threshold 
is chosen on the same dataset [69]. Several panel papers that we 
previously mentioned did not perform any kind of validation 
of the accuracy of the reported classiication [8,24,35,37,38,52,55] or 
simply mentioned that it would or should be done later. While 
this is still acceptable for single biomarkers, doing so with panels 
could lead to false hopes and should be avoided in the future. 
Therefore, it is crucial to have a separate dataset that includes 
patient data, which is independent from the model deinition, to 
test that model. Ideally, the dataset should originate from a sepa-
rate cohort of patients with biomarker concentration measured 
in a different laboratory. However, such validation data is often 
unavailable, and the number of patients is often too small to split 
the data into independent training and test sets of the same size. 

How?

Apart from using an independent validation dataset, which is not 
always possible, several computational methods can overcome this 
issue. If the number of patients is suficient, a subset of the sample 
population can be left aside for the training process and kept as 

validation set, which was done by several groups [36,44,50,53]. If not 
enough patients are available, randomization techniques, such as 
permutation tests, cross validation and bootstrapping, can help 
with evaluation if the classiication is signiicant or if it is only 
overitting [11].

Permutation tests

Permutation tests allow the determination of whether the classi-
ication result is signiicant [70,71]. Patient labels are randomly 
permutated, and the problem is treated in the same way, pro-
viding information concerning the classiication error under the 
random hypothesis. If the eficiency of the classiication of ran-
dom patients is comparable to that of real patients, it is a strong 
indication that the method is overitting the training data.

Cross validation

Cross validation is a purely computational method that allows eval-
uation of the robustness of a classiication. In cross validation, the 
data are split into a number, k, of equal-sized parts. Sequentially, 
k-1 parts are used to train the classiier model, and the remaining 
one is kept to test the performance of the model. When all parts 
have been used as test sets, performance is averaged [34].

Box 3. Support vector machines.

• Let us consider a 2D example where the two classes are completely separable by a straight line. It is easy to see that there are many 

straight lines that do the job; the question is which of these lines provides the best classiication on a test sample? The support vector 

machine solves this problem by selecting the (usually unique) separating line that is farthest away from any data point [92]. It can be 

shown that this line often yields better classiication performance on a test set since it is as far away as possible from the critical points, 

which lie close to the class boundary. Mathematically, the linear separation can be formulated as follows: for each feature vector x
i
 of 

class y
i
 (±1) we have we have w x

i
 + b ≤ -1 for y

i
 = -1 and w x

i
 + b ≥ 1 for y

i
 = 1 where w is a vector orthogonal to the separating line. It 

can be shown [92] that the distance of the separating line to the next x
i 
is 1/|w|; therefore, the support vector machine searches for the 

smallest |w|2, which satisies the aforementioned inequalities. The lines w x
i
 + b = -1 for y

i
 = -1 and w x

i
 + b = 1 for y

i
 = 1 are termed the 

margins, which lie parallel and at equal distance 1/|w| to the separating line and touch one or more data points of the 

corresponding class

• In almost all real-life applications, classes are not linearly separable. Cortes and Vapnik, however, showed that a similar approach still 

works in these cases [92]. They introduced so-called slack variables x
i
 ≥ 0 and reformulated the constraints as w x

i
 + b ≤ -1+xi for y

i
 = -1 

and w x
i
 + b ≥ 1-xi for y

i
 = 1, that is, for each x

i
 on the right side of its margin, we have x

i
 = 0, and for each x

i
 on the wrong side of the 

margin, x
i
 > 0, where x

i 
/|w| is the distance from the margin (FIGURE 4). Since we still would like to have a margin distance 2/|w| as large 

as possible, but also as little misclassiication 

as possible, we search for a w value that satisies the ‘slack’ inequalities mentioned and minimizing

where p is the number of samples and C a misclassiication weight. This is a quadratic programming problem, for which many eficient 

algorithms are available, which usually converge to a unique solution. It can be shown that  

 

where a
I
 > 0 for those sample vectors (so-called support vectors), which lie either on the margin or on the wrong side of it 

(w x
i
 + b ≥ -1 for y

i
 = -1 and w x

i
 + b ≤ 1 for y

i
 = 1), and a

i
 = 0 for all other correctly classiied vectors

• Cortes and Vapnik also showed that the support vector machine approach can be naturally extended to nonlinear separation [92]. In 

FIGURE 1D for example, we used a radial basis kernel, which yields the class indicator function as a sum over radial basis functions, which 

are centered at the support vectors (see [34,92] for a detailed discussion of the kernel-based formulation)
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Typical values for k are ive or ten [34]. If k is equal to the sample 
size, it is a leave-one-out cross validation. The problem with cross 
validation is that the training sample size is smaller, which can lead 
to overestimation of the prediction error. For biologists and clini-
cians, another problem is that each round of cross validation can 
choose a different model. Therefore, it must be made clear we evalu-
ate the error of the method, not of the model itself. Several groups 
applied cross validation for biomarker applications [43,45,47,50,62,67].

Several variants of cross validation exist. When the data are not 
balanced, that is, one class has a much smaller patient number 
than the other, a stratiied cross validation can be performed, 
where both classes are represented in the same proportion in each 
k fold than in the whole set. Another variant is double cross vali-
dation, which combines an internal loop where the model meta-
parameters (such as the width of a kernel, the kernel-type or the 
number of principal components) are deined, and an external 
loop where the model is actually trained with these parameters 
and performance is evaluated [70].

Bootstrapping 

Bootstrapping involves randomly selecting items with replacement 
in order to obtain a new sample of the same size as the original one. 
Approximately 37% of the original sample will not be selected and 
can be used as a test set. This procedure can be repeated a large 
number of times to get a good approximation [34,72].

In contrast to cross validation, sample size is not reduced 
but some data will be redundant. It is particularly helpful for 
determining empirical conidence intervals [73]. Several publica-
tions employed bootstrapping for validation [6,42,51]. Similarly to 
double cross validation, Feng et al. proposed that cross validation 
should serve as model selection and bootstrap as estimation of 
the classiication error [11].

Separate set validation

The ultimate validation is always to reproduce the experiment 
independently on different patients and within a different labora-
tory. However, mainly because of time and funding constraints, 
it cannot always be carried out, and one must rely on previous 
investigations. For example, Whiteley et al. showed that no pub-
lication using panels for the diagnosis of ischemic stroke validated 
its results on an independent patient cohort [70]. They recom-
mended independent validation as a good practice, also for other 
work dealing with patient classiication. Reddy et al. [45] and 
Gevaert et al. [63], for example, rely on an independent cohort 
for validation.

Statistical method reporting

Proteomics is currently moving towards better reporting require-
ments, such as the ‘Minimum Information about a Proteomics 
Experiment’ model [73]. A similar initiative exists in the medi-
cal community with the Standards for Reporting of Diagnostic 
Accuracy that deines a checklist of 25 items to promote a coherent 
reporting of accuracies [74]. However, none of these initiatives fully 
covers the needs of panels. As good reporting of panel performance 
is absolutely required to gain medical community acceptance, 
we believe that reporting standards will be needed for panels. 
Detailing what this standard would be is out of the scope of this 
review, but we can highlight a few points of major importance. 

In order to allow the ultimate independent validation by differ-
ent laboratories, it is very important that statistical ana lysis meth-
ods are discussed in detail and information regarding the software 
and corresponding parameters is provided. Stating which software 
was used is important, since default parameters may differ in dis-
tinct implementations of the same method. Most studies do not 
follow this advice, with few exceptions [6,8,37]. For cross validation 
and bootstrapping, a graph such as that presented by Wild et al. 
usually helps the reader understand how the performance test 
was applied and what the reported results really mean [62]. Other 
requirements will need to be discussed by the panel community.

Comparison of methods

As mentioned earlier, several models can be generated from 
one dataset. Therefore, model comparison is crucial in order to 
optimize the inal selection.

Several papers analyze datasets with more than one 
method [45,46,48]. However, there is no proper comparison. Reddy 
et al. states that “logical ana lysis of data model has signiicantly 
better performance on the independent validation set compared 
with the other classiication models” [45]. However, there are 
no statistics to prove this difference, and conidence intervals 
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Figure 4. Support vector machines. Crosses and dots 
represent Stage 1 and Stage 2 human African trypanosomiasis 
patients, respectively. Margins and the separation line are 
represented by dashed and solid lines, respectively. Support 
vector observations are circled in gray. The arrow represents the 
vector w/|w|2.
GSTP: Glutathione S-transferase Pi; H-FABP: Heart-type fatty 
acid-binding protein. 
Redrawn from [8].
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partially overlap. Prados et al. used McNemar’s test for pair-
wise comparison of algorithms [46]. Wu eludes the problem by 
studying the stability of the model performance over several cross 
validation or bootstrap replicates [48].

The most important point is that performance estimates should 
be compared on a dataset that is independent from the model 
deinition [75,76]. This can be carried out either with an inde-
pendent validation cohort (separated or split), or by estimating 
performance via cross validation or bootstrapping.

Receiver-operating characteristic curves

Traditionally, performance of a test discriminating between two 
classes of patients is evaluated using a receiver-operating charac-
teristic (ROC) curve [77]. This shows the variation of sensitivity 
and speciicity of a test as the decision threshold changes. When 
the decision threshold is low, sensitivity is high and speciicity 
is low, thus corresponding to the top right zone of the curve. 
Conversely, when the decision threshold is high, speciicity is high 
and sensitivity is low, which corresponds to the bottom left part 
of the curve (FIGURE 5, see also TABLE 1). 

A biomarker with no discrimination power would be character-
ized by a diagonal line, while a ‘perfect’ biomarker would reach 
the top left point corresponding to 100% sensitivity and 100% 
speciicity. A major characteristic of a ROC curve is its AUC. The 
maximum AUC possible is 100%, corresponding to a ‘perfect’ 
classiication. A nondiscriminating ROC curve has an AUC of 
50%. In 1989, McClish introduced the concept of partial area 
under the ROC curve [15,78,79]. It consists of analyzing only a 
region of special interest of the ROC curve and allows the selec-
tion of models with high speciicity or sensitivity, rather than 
models with a better average performance but potentially lower 
clinical value.

Hanley and McNeil [80] and DeLong et al. [81] proposed non-
parametric methods to compare ROC curves derived from the 
same sample. McClish described a method to ind a speciic 
region within a ROC curve that is different [82]. Baker proposed 
a method to select best thresholds from a multidimensional ROC 
curve [83].

An intrinsic property of ROC curves is that the AUC of 
smooth curves tend to be greater than those of trapezoidal or step 
graphs [81,84]. Therefore, classiication methods or predictors that 
can take only a few values (such as clinical scores) will not work 
as well as continuous predictors (such as biomarkers). Several 
smoothing procedures can be applied to reduce this problem. 
For example, logistic or other regression techniques will produce 
smooth estimates of the class probabilities. Gu et al. present a 
smoothing procedure based on Bayesian bootstrap estimation [85].

Another option is to bootstrap and compute conidence intervals 
and see if the observed sample is compatible with the bootstrap 
distribution [71,72]. Reddy et al. adopted this solution [45].

Classiications

Statistical tests should also be applied in order to judge the sig-
niicance of differences between classiiers. If only two classiiers 
are compared, a simple binomial or McNemar test [38,86,87] can 

calculate the p-value to show that both classiiers are equally 
good [88]. Both tests are based on a 2 × 2 table, where the diagonal 
elements count the number of patients where both classiiers agree 
(either correctly or erroneously), and the off-diagonal elements 
indicate the number of patients where only one of the classi-
iers produces the right prediction. The off-diagonal elements 
are then compared with the calculated p-values. The number 
of patients where both classiiers agree does not enter into these 
calculations, which can cause a problem if the number of ties is 
much larger than the number of discrepancies, and these tests 
will overestimate the difference between the classiiers. Other, 
more sophisticated and general tests and methods for testing 
multiple classiiers are also described in Salzberg’s overview [89]. 
Often, several parameterizations of the same classiiers are tested 
and the best one is retained. This can lead to overly optimistic 
results if the p-values are not adjusted for multiple testing. For 
example, if 20 independent parameterizations are tested at a 5% 
signiicance level, one of these parameterizations may exceed the 
signiicance level just by chance.

A panel should perform better than each of its individual mark-
ers. When comparing the performance of a panel with that of 
an individual marker, it is important to be as fair as possible. In 
most publications, the predictions of individual markers are not 
evaluated by cross validation, which may lead to overly optimistic 
results [69]. Therefore, we recommend measuring all classiier 
performances with the same cross validation method or on an 
independent test set.
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Expert commentary

Interest in biomarker panels has been growing over the last few 
years. A number of publications have demonstrated that the 
approach has a big potential and could be suitable for various 
clinical applications. They applied many different methods, based 
on thresholds, decision trees, logistic regression, SVM and several 
other techniques. None of these methods is clearly superior. SVMs 
are well studied and tend to work well, even for high-dimensional 
data, whereas threshold-based methods are easy to implement and 
understand for medical practitioners. The inal choice of a method 
must be carefully validated.

New markers, although they do not individually perform better 
than the current ones, could bring useful complementary pieces 
of information to a panel if they allow evaluation of the state of 
different pathways. However, such a relation must be sought dur-
ing the discovery phase, which is made dificult by the very low 
sample size commonly used.

The limited consensus regarding accepted statistical methods and 
tools hamper their adoption, and could explain why the number 
of panels available in clinical practice is still limited. We predict 
that such standardized methods and tools will soon be made avail-
able and that the ield will continue to grow despite these current 
limitations. Validation and comparison are of major importance 
in the evaluation of panels. It is not always possible to obtain an 
independent validation cohort, but in this case, the model must be 
evaluated by cross validation or bootstrap. Here again, the lack of 
clear guidelines and standards makes it dificult to compare different 
methods and impedes the credibility of the published results.

Five-year view

To gain a broad acceptance, future panel studies will need to 
deine and follow reporting standards. Special care regarding vali-
dation will be required. Robust statistical methods of comparison 
must still be deined and are a crucial step. There is clearly a criti-
cal need for standardized methodologies and reporting standards 
to gain the medical practitioner’s conidence. It is not unreason-
able to say that in the absence of a strict enforcement of guidelines, 
most authors will not comply with better validation and reporting.

In the future, proteomics researchers willing to work with pan-
els will need to think about combinations during the discovery 
process. Standard feature-selection techniques that select only a 

few of the best individual markers might reject proteins that are 
less eficient individually but that might have a greater weight 
in a panel. Some progress has been made towards this goal, with 
promising results [89].

We can imagine that proteomics biomarkers, which are still not 
commonly used in clinical practice, and panels, might contribute 
to new and more eficient IVD tools. However, given that the 
ield is only in its irst stages, it will probably take more than ive 
years to see protein panels used in large scale clinical practice.
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Key issues

• A panel is the combination of information from several 

molecules into one predictor.

• Several methods can be applied. None of them is clearly 

superior. Support vector machines are usually preferred for 

high-dimensional data, such as mass spectra, while logistic 

regression or threshold-based methods are commonly preferred 

with ELISA-measured biomarkers. 

• Methods are dificult to compare, and no eficient comparison 

tool is available yet.

• An especially careful validation is required in order not to 

overestimate the performance. It can be achieved either by 

using a separate dataset or by means of cross validation and/or 

bootstrap. Validation in an independent cohort measured by a 

different group is eventually required.

• Reporting detailed information regarding software and 

parameters set for preprocessing, classiication, validation and 

comparison of methods should be seen as requirements. 

Reporting standards need to be developed.
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
pROC: an open-source 

package for R and S+ to analyze 
and compare ROC curves



As outlined in the previous chapter, receiver operating characteristic (ROC) curves 

are commonly used in biomedical and bioinformatics applications to evaluate the 

performance of classifiers.  Unfortunately,  we found that the statistical analysis is 

often insufficient to support the claims made in the literature. Therefore, to be able 

to perform valid ROC analysis, we developed a package for R and S+ , called pROC, 

and released it under an open-source license.

pROC is a set of t0ols that enables the analysis, display, smoothing and comparison 

of ROC curves. The R version of the package is written with user-friendly, object-

oriented interfaces. The S+ version additionally features a graphical user interface 

(GUI) for users with no programming skills. With data imported into the R or S+ 

environments in a standard manner, pROC computes the characteristics (sensitivity 

and  specificity)  of  the  ROC  curve.  It  features  several  analysis  functions  for  the 

computation full or partial area under the ROC curve (AUC), confidence intervals, 

and methods to statistically compare two ROC curves. Finally, intermediary results 

can be queried and visualized in user-friendly interfaces. 

We show a case-study to demonstrate how a ROC analysis can be performed with 

pROC, based on the data first published in chapter 5.

In  conclusion,  pROC  is  a  package  for  R  and  S+  specifically  dedicated  to  ROC 

analysis. It features several statistical tests to compare ROC curves, and in particular 

partial areas under the curve, allowing proper ROC interpretation. pROC is available 

in two versions: in the R programming language or with a graphical user interface in 

the S+ statistical software. It is accessible at expasy.org/tools/pROC/ under the GNU 

General Public License. It is also distributed through the CRAN and CSAN public 

repositories, facilitating its installation. 

This  article  is  an  important  part  of  my  thesis.  I  carried  out  the  programming, 

packaged  the  code,  analyzed  the  data  and  fully  wrote  the  manuscript,  with 

invaluable advice from the co-authors.
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pROC: an open-source package for R and S+ to
analyze and compare ROC curves
Xavier Robin1*, Natacha Turck1, Alexandre Hainard1, Natalia Tiberti1, Frédérique Lisacek2, Jean-Charles Sanchez1

and Markus Müller2*

Abstract

Background: Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical
and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient
statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+
that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-
oriented and flexible interface.

Results: With data previously imported into the R or S+ environment, the pROC package builds ROC curves and
includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the
curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final
results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows
how to perform a typical ROC analysis with pROC.

Conclusions: pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical
tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation.
pROC is available in two versions: in the R programming language or with a graphical user interface in the S+
statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also
distributed through the CRAN and CSAN public repositories, facilitating its installation.

Background
A ROC plot displays the performance of a binary classi-
fication method with continuous or discrete ordinal out-
put. It shows the sensitivity (the proportion of correctly
classified positive observations) and specificity (the pro-
portion of correctly classified negative observations) as
the output threshold is moved over the range of all pos-
sible values. ROC curves do not depend on class prob-
abilities, facilitating their interpretation and comparison
across different data sets. Originally invented for the
detection of radar signals, they were soon applied to
psychology [1] and medical fields such as radiology [2].
They are now commonly used in medical decision mak-
ing, bioinformatics [3], data mining and machine

learning, evaluating biomarker performances or compar-
ing scoring methods [2,4].
In the ROC context, the area under the curve (AUC)

measures the performance of a classifier and is fre-
quently applied for method comparison. A higher AUC
means a better classification. However, comparison
between AUCs is often performed without a proper sta-
tistical analysis partially due to the lack of relevant,
accessible and easy-to-use tools providing such tests.
Small differences in AUCs can be significant if ROC
curves are strongly correlated, and without statistical
testing two AUCs can be incorrectly labelled as similar.
In contrast a larger difference can be non significant in
small samples, as shown by Hanczar et al. [5], who also
provide an analytical expression for the variance of
AUC’s as a function of the sample size. We recently
identified this lack of proper statistical comparison as a
potential cause for the poor acceptance of biomarkers as
diagnostic tools in medical applications [6]. Evaluating a
classifier by means of total AUC is not suitable when

* Correspondence: Xavier.Robin@unige.ch; markus.mueller@isb-sib.ch
1Biomedical Proteomics Research Group, Department of Structural Biology
and Bioinformatics, Medical University Centre, Geneva, Switzerland
2Swiss Institute of Bioinformatics, Medical University Centre, Geneva,
Switzerland
Full list of author information is available at the end of the article

Robin et al. BMC Bioinformatics 2011, 12:77
http://www.biomedcentral.com/1471-2105/12/77

© 2011 Robin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://expasy.org/tools/pROC/
mailto:Xavier.Robin@unige.ch
mailto:markus.mueller@isb-sib.ch
http://creativecommons.org/licenses/by/2.0


the performance assessment only takes place in high
specificity or high sensitivity regions [6]. To account for
these cases, the partial AUC (pAUC) was introduced as
a local comparative approach that focuses only on a
portion of the ROC curve [7-9].
Software for ROC analysis already exists. A previous

review [10] compared eight ROC programs and found
that there is a need for a tool performing valid and stan-
dardized statistical tests with good data import and plot
functions.
The R [11] and S+ (TIBCO Spotfire S+ 8.2, 2010, Palo

Alto, CA) statistical environments provide an extensible
framework upon which software can be built. No ROC
tool is implemented in S+ yet while four R packages
computing ROC curves are available:
1) ROCR [12] provides tools computing the perfor-

mance of predictions by means of precision/recall plots,
lift charts, cost curves as well as ROC plots and AUCs.
Confidence intervals (CI) are supported for ROC analy-
sis but the user must supply the bootstrapped curves.
2) The verification package [13] is not specifically

aimed at ROC analysis; nonetheless it can plot ROC
curves, compute the AUC and smooth a ROC curve
with the binomial model. A Wilcoxon test for a single
ROC curve is also implemented, but no test comparing
two ROC curves is included.
3) Bioconductor includes the ROC package [14] which

can only compute the AUC and plot the ROC curve.
4) Pcvsuite [15] is an advanced package for ROC

curves which features advanced functions such as cov-
ariate adjustment and ROC regression. It was originally
designed for Stata and ported to R. It is not available on
the CRAN (comprehensive R archive network), but can
be downloaded for Windows and MacOS from http://
labs.fhcrc.org/pepe/dabs/rocbasic.html.
Table 1 summarizes the differences between these

packages. Only pcvsuite enables the statistical comparison

between two ROC curves. Pcvsuite, ROCR and ROC can
compute AUC or pAUC, but the pAUC can only be
defined as a portion of specificity.
The pROC package was designed in order to facilitate

ROC curve analysis and apply proper statistical tests for
their comparison. It provides a consistent and user-
friendly set of functions building and plotting a ROC
curve, several methods smoothing the curve, computing
the full or partial AUC over any range of specificity or
sensitivity, as well as computing and visualizing various
CIs. It includes tests for the statistical comparison of two
ROC curves as well as their AUCs and pAUCs. The soft-
ware comes with an extensive documentation and relies
on the underlying R and S+ systems for data input and
plots. Finally, a graphical user interface (GUI) was devel-
oped for S+ for users unfamiliar with programming.

Implementation
AUC and pAUC
In pROC, the ROC curves are empirical curves in the
sensitivity and specificity space. AUCs are computed
with trapezoids [4]. The method is extended for pAUCs
by ignoring trapezoids outside the partial range and
adding partial trapezoids with linear interpolation when
necessary. The pAUC region can be defined either as a
portion of specificity, as originally described by McClish
[7], or as a portion of sensitivity, as proposed later by
Jiang et al. [8]. Any section of the curve pAUC(t0, t1)
can be analyzed, and not only portions anchored at
100% specificity or 100% sensitivity. Optionally, pAUC
can be standardized with the formula by McClish [7]:

1
2

(
1 +

pAUC − min
max − min

)
, (1)

where min is the pAUC over the same region of the
diagonal ROC curve, and max is the pAUC over the

Table 1 Features of the R packages for ROC anaylsis

Package name ROCR Verification ROC (Bioconductor) pcvsuite pROC

Smoothing No Yes No Yes Yes

Partial AUC Only
SP1

No Only SP1 Only SP SP and SE

Confidence intervals Partial2 Partial3 No Partial4 Yes

Plotting Confidence
Intervals

Yes Yes No Yes Yes

Statistical tests No AUC (one
sample)

No AUC, pAUC, SP AUC, pAUC, SP, SE,
ROC

Available on CRAN Yes Yes No, http://www.bioconductor.
org/

No, http://labs.fhcrc.org/pepe/
dabs/

Yes

1Partial AUC only between 100% and a specified cutoff of specificity.
2Bootstrapped ROC curves must be computed by the user.
3Only threshold averaging.
4Only at a given specificity or inverse ROC.
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same region of the perfect ROC curve. The result is a
standardized pAUC which is always 1 for a perfect ROC
curve and 0.5 for a non-discriminant ROC curve, what-
ever the partial region defined.

Comparison
Two ROC curves are “paired” (or sometimes termed
“correlated” in the literature) if they derive from multi-
ple measurements on the same sample. Several tests
exist to compare paired [16-22] or unpaired [23] ROC
curves. The comparison can be based on AUC
[16-19,21], ROC shape [20,22,23], a given specificity [15]
or confidence bands [3,24]. Several tests are implemen-
ted in pROC. Three of them are implemented without
modification from the literature [17,20,23], and the
others are based on the bootstrap percentile method.
The bootstrap test to compare AUC or pAUC in

pROC implements the method originally described by
Hanley and McNeil [16]. They define Z as

Z =
θ1 − θ2

sd (θ1 − θ2)
, (2)

where θ1 and θ2 are the two (partial) AUCs. Unlike Han-
ley and McNeil, we compute sd(θ1 - θ2) with N (defaults to
2000) bootstrap replicates. In each replicate r, the original
measurements are resampled with replacement; both new
ROC curves corresponding to this new sample are built,
the resampled AUCs θ1,r and θ2,r and their difference Dr =
θ1,r - θ2,r are computed. Finally, we compute sd(θ1 - θ2) =
sd(D). As Z approximately follows a normal distribution,
one or two-tailed p-values are calculated accordingly. This
bootstrap test is very flexible and can be applied to AUC,
pAUC and smoothed ROC curves.
Bootstrap is stratified by default; in this case the same

number of case and control observations than in the original
sample will be selected in each bootstrap replicate. Stratifica-
tion can be disabled and observations will be resampled
regardless of their class labels. Repeats for the bootstrap and
progress bars are handled by the plyr package [25].
The second method to compare AUCs implemented

in pROC was developed by DeLong et al. [17] based on
U-statistics theory and asymptotic normality. As this
test does not require bootstrapping, it runs significantly
faster, but it cannot handle pAUC or smoothed ROC
curves. For both tests, since the variance depends on the
covariance of the ROC curves (Equation 3), strongly
correlated ROC curves can have similar AUC values and
still be significantly different.

var (θ1 − θ2) = var (θ1) + var (θ2) − 2 cov (θ1, θ2) (3)

Venkatraman and Begg [20] and Venkatraman [23]
introduced tests to compare two actual ROC curves as

opposed to their respective AUCs. Their method evalu-
ates the integrated absolute difference between the two
ROC curves, and a permutation distribution is generated
to compute the statistical significance of this difference.
As the measurements leading to the two ROC curves
may be performed on different scales, they are not gen-
erally exchangeable between two samples. Therefore, the
permutations are based on ranks, and ranks are recom-
puted as described in [20] to break the ties generated by
the permutation.
Finally a test based on bootstrap is implemented to

compare the ROC curve at a given level of specificity or
sensitivity as proposed by Pepe et al. [15]. It works
similar to the (p)AUC test, but instead of computing the
(p)AUC at each iteration, the sensitivity (or specificity)
corresponding to the given specificity (or respectively
sensitivity) is computed. This test is equivalent to a
pAUC test with a very small pAUC range.

Confidence intervals
CIs are computed with Delong’s method [17] for AUCs
and with bootstrap for pAUCs [26]. The CIs of the
thresholds or the sensitivity and specificity values are
computed with bootstrap resampling and the averaging
methods described by Fawcett [4]. In all bootstrap CIs,
patients are resampled and the modified curve is built
before the statistics of interest is computed. As in the
bootstrap comparison test, the resampling is done in a
stratified manner by default.

Smoothing
Several methods to smooth a ROC curve are also imple-
mented. Binormal smoothing relies on the assumption
that there exists a monotone transformation to make
both case and control values normally distributed [2].
Under this condition a simple linear relationship (Equa-
tion 4) holds between the normal quantile function (�)
values of sensitivities and specificities. In our implemen-
tation, a linear regression between all quantile values
defines a and b, which then define the smoothed curve.

φ−1(SE) = a + bφ−1(SP) (4)

This is different from the method described by Metz
et al. [27] who use maximum likelihood estimation of a
and b. Binormal smoothing was previously shown to be
robust and to provide good fits in many situations even
when the deviation from basic assumptions is quite
strong [28]. For continuous data we also include meth-
ods for kernel (density) smoothing [29], or to fit various
known distributions to the class densities with fitdistr in
the MASS package [30]. If a user would like to run a
custom smoothing algorithm that is optimized for the
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analysed data, then pROC also accepts class densities or
the customized smoothing function as input. CI and sta-
tistical tests of smoothed AUCs are done with bootstrap.

Results and Discussion
We first evaluate the accuracy of the ROC comparison
tests. Results in Additional File 1 show that all unpaired
tests give uniform p-values under a null hypothesis (Addi-
tional Files 1 and 2) and that there is a very good correla-
tion between DeLong’s and bootstrap tests (Additional Files
1 and 3). The relation between Venkatraman’s and the
other tests is also investigated (Additional Files 1 and 4).
We now present how to perform a typical ROC analy-

sis with pROC. In a recent study [31], we analyzed the
level of several biomarkers in the blood of patients at
hospital admission after aneurysmal subarachnoid hae-
morrhage (aSAH) to predict the 6-month outcome. The
141 patients collected were classified according to their
outcome with a standard neurological scale, the Glasgow
outcome scale (GOS). The biomarker performances
were compared with the well established neurological
scale of the World Federation of Neurological Surgeons
(WFNS), also obtained at admission.

Case study on clinical aSAH data
The purpose of the case presented here is to identify
patients at risk of poor post-aSAH outcome, as they
require specific healthcare management; therefore the
clinical test must be highly specific. Detailed results of
the study are reported in [31]. We only outline the fea-
tures relevant to the ROC analysis.
ROC curves were generated in pROC for five biomar-

kers (H-FABP, S100b, Troponin I, NKDA and UFD-1)
and three clinical factors (WFNS, Modified Fisher score
and age).
AUC and pAUC
Since we are interested in a clinical test with a high spe-
cificity, we focused on partial AUC between 90% and
100% specificity.
The best pAUC is obtained by WFNS, with 3.1%, clo-

sely followed by S100b with 3.0% (Figure 1). A perfect
clinical test within the same region corresponds to a
pAUC of 10%, while a ROC curve without any discrimi-
nation power would yield only 0.5%. In the case of
WFNS, we computed a standardized pAUC of 63.7%
with McClish’s formula (Equation 1). Of these 63.9%,
50% are due to the small portion (0.5% non-standardized)
of the ROC curve below the identity line, and the remain-
ing 13.9% are made of the larger part (2.6% non-standar-
dized) above the curve. In the R version of pROC, the
standardized pAUC of WFNS can be computed with:
roc(response = aSAH$outcome, predictor =

aSAH$wfns, partial.auc = c(100, 90), par-
tial.auc.correct = TRUE, percent = TRUE)

In the rest of this paper, we report only not standar-
dized pAUCs.
CI
Given the pAUC of WFNS, it makes sense to compute a
95% CI of the pAUC to assess the variability of the mea-
sure. In this case, we performed 10000 bootstrap repli-
cates and obtained the 1.6-5.0% interval. In our
experience, 10000 replicates give a fair estimate of the
second significant digit. A lower number of replicates
(for example 2000, the default) gives a good estimate of
the first significant digit only. Other confidence intervals
can be computed. The threshold with the point farthest
to the diagonal line in the specified region was deter-
mined with pROC to be 4.5 with the coords function. A
rectangular confidence interval can be computed and
the bounds are 89.0-98.9 in specificity and 26.0-54.0 in
sensitivity (Figure 1). If the variability of sensitivity at
90% specificity is considered more relevant than at a
specific threshold, the interval of sensitivity is computed
as 32.8-68.8. As shown in Figure 1 for S100b, a CI
shape can be obtained by simply computing the CI’s of
the sensitivities over several constantly spaced levels of
specificity, and these CI bounds are then joined to gen-
erate the shape. The following R code calculates the
confidence shape:
plot(x = roc(response = aSAH$outcome,

predictor = aSAH$s100, percent = TRUE, ci =

Figure 1 ROC curves of WFNS and S100b. ROC curves of WFNS
(blue) and S100b (green). The black bars are the confidence
intervals of WFNS for the threshold 4.5 and the light green area is
the confidence interval shape of S100b. The vertical light grey
shape corresponds to the pAUC region. The pAUC of both empirical
curves is printed in the middle of the plot, with the p-value of the
difference computed by a bootstrap test on the right.
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TRUE, of = “se”, sp = seq(0, 100, 5)), ci.
type="shape”)
The confidence intervals of a threshold or of a prede-

fined level of sensitivity or specificity answer different
questions. For instance, it would be wrong to compute
the CI of the threshold 4.5 and report only the CI
bound of sensitivity without reporting the CI bound of
specificity as well. Similarly, determining the sensitivity
and specificity of the cut-off 4.5 and then computing
both CIs separately would also be inaccurate.
Statistical comparison
The second best pAUC is that of S100b with 3.0%. The
difference to WFNS is very small and the bootstrap test
of pROC indicates that it is not significant (p = 0.8, Fig-
ure 1). Surprisingly, a Venkatraman’s test (over the total
ROC curve) indicates a difference in the shape of the
ROC curves (p = 0.004), and indeed a test evaluating
pAUCs in the high sensitivity region (90-100% sensitiv-
ity) would highlight a significant difference (p = 0.005,
pAUC = 4.3 and 1.4 for WFNS and S100b respectively).
However, since we are not interested in the high sensi-
tivity region of the AUC there is no significant differ-
ence between WFNS and S100b.
In pROC pairwise comparison of ROC curves is

implemented. Multiple testing is not accounted for and
in the event of running several tests, the user is
reminded that as with any statistical test, multiple tests
should be performed with care, and if necessary appro-
priate corrections should be applied [32].
The bootstrap test can be performed with the follow-

ing code in R:
roc.test(response = aSAH$outcome, predic-

tor1 = aSAH$wfns, predictor2 = aSAH$s100,
partial.auc = c(100, 90), percent = TRUE)
Smoothing
Whether or not to smooth a ROC curve is a difficult
choice. It can be useful in ROC curves with only few
points, in which the trapezoidal rule consistently under-
estimates the true AUC [17]. This is the case with most
clinical scores, such as the WFNS shown in Figure 2
where three smoothing methods available in pROC are
plotted: (i) normal distribution fitting, (ii) density and
(iii) binormal. In our case study:
(i) The normal fitting (red) gives a significantly lower

AUC estimate (Δ = -5.1, p = 0.0006, Bootstrap test).
This difference is due to the non-normality of WFNS.
Distribution fitting can be very powerful when there is a
clear knowledge of the underlying distributions, but
should be avoided in other contexts.
(ii) The density (green) smoothing also produces a

lower (Δ = -1.5, p = 6*10-7) AUC. It is interesting to note
that even with a smaller difference in AUCs, the p-value
can be more significant due to a higher covariance.

(iii) The binormal smoothing (blue) gives a slightly
but not significantly higher AUC than the empirical
ROC curve (Δ = +2.4, p = 0.3). It is probably the best
of the 3 smoothing estimates in this case (as mentioned
earlier we were expecting a higher AUC as the empiri-
cal AUC of WFNS was underestimated). For compari-
son, Additional File 5 displays both our implementation
of binormal smoothing with the one implemented in
pcvsuite [15].
Figure 3 shows how to create a plot with multiple

smoothed curves with pROC in S+. One loads the
pROC library within S+, selects the new ROC curve
item in the Statistics menu, selects the data on which
the analysis is to be performed, and then moves to the
Smoothing tab to set parameters for smoothing.
Conclusion
In this case study we showed how pROC could be run
for ROC analysis. The main conclusion drawn from this
analysis is that none of the measured biomarkers can
predict the patient outcome better than the neurological
score (WFNS).

Installation and usage
R
pROC can be installed in R by issuing the following
command in the prompt:
install.packages("pROC”)
Loading the package:
library(pROC)

Figure 2 ROC curve of WFNS and smoothing. Empirical ROC
curve of WFNS is shown in grey with three smoothing methods:
binormal (blue), density (green) and normal distribution fit (red).
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Getting help:
?pROC

S+
pROC is available from the File menu, item Find
Packages.... It can be loaded from the File menu, item
Load Library....
In addition to the command line functions, a GUI is

then available in the Statistics menu. It features one
window for univariate ROC curves (which contains
options for smoothing, pAUC, CIs and plotting) and
two windows for paired and unpaired tests of two ROC
curves. In addition a specific help file for the GUI is
available from the same menu.

Functions and methods
A summary of the functions available to the user in the
command line version of pROC is shown in Table 2.
Table 3 shows the list of the methods provided for plot-
ting and printing.

Conclusions
The pROC package is a powerful set of tools analyzing
and comparing ROC curves in R and S+. Unlike existing
packages such as ROCR or verification, it is solely dedi-
cated to ROC analysis, but provides in our knowledge
the most complete set of statistical tests and plots for
ROC curves. As shown in the case study reported here,

Figure 3 Screenshot of pROC in S+ for smoothing WFNS ROC curve. Top left: the General tab, where data is entered. Top right: the details
about smoothing. Bottom left: the details for the plot. Checking the box “Add to existing plot” allows drawing several curves on a plot. Bottom
right: the result in the standard S+ plot device.
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pROC features the computation of AUC and pAUC, var-
ious kinds of confidence intervals, several smoothing
methods, and the comparison of two paired or unpaired
ROC curves. We believe that pROC should provide
researchers, especially in the biomarker community,
with the necessary tools to better interpret their results
in biomarker classification studies.
pROC is available in two versions for R and S+. A thor-

ough documentation with numerous examples is provided
in the standard R format. For users unfamiliar with pro-
gramming, a graphical user interface is provided for S+.

Availability and requirements
• Project name: pROC
• Project home page: http://expasy.org/tools/pROC/
• Operating system(s): Platform independent
• Programming language: R and S+
• Other requirements: R ≥ 2.10.0 or S+ ≥ 8.1.1
• License: GNU GPL
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: Assessment of the ROC comparison tests. We
evaluate the uniformity of the tests under the null hypothesis (ROC
curves are not different), and the correlation between the different tests.

Additional file 2: Histograms of the frequency of 600 test p-values
under the null hypothesis (ROC curves are not different). A:

DeLong’s paired test, B: DeLong’s unpaired test, C: bootstrap paired test
(with 10000 replicates), D: bootstrap unpaired test (with 10000 replicates)
and E: Venkatraman’s test (with 10000 permutations).

Additional file 3: Correlations between DeLong and bootstrap
paired tests. X axis: DeLong’s test; Y-axis: bootstrap test with number of
bootstrap replicates. A: 10, B: 100, C: 1000 and D: 10000.

Additional file 4: Correlation between DeLong and Venkatraman’s
test. X axis: DeLong’s test; Y-axis: Venkatraman’s test with 10000
permutations.

Additional file 5: Binormal smoothing. Binormal smoothing with
pcvsuite (green, solid) and pROC (black, dashed).

List of abbreviations
aSAH: aneurysmal subarachnoid haemorrhage; AUC: area under the curve; CI:
confidence interval; CRAN: comprehensive R archive network; CSAN:
comprehensive S-PLUS archive network; pAUC: partial area under the curve;
ROC: receiver operating characteristic.
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
PanelomiX: a web-based tool 
to create biomarker panels 

based on thresholds



This  chapter  describes  the  second tool  developed  in  this  thesis,  PanelomiX.  We 

present both the tool and the algorithms in detail. It works by combining biomarkers 

and  clinical  scores  by  selecting  concentration  thresholds  that  provide  optimal 

classification  performance  with  the  iterative  combination  of  biomarkers  and 

thresholds  (ICBT)  method.  Feature  selection  is  carried  out  with  Random  Forest 

when necessary. The robustness and performance of the obtained panels is analyzed 

with cross-validation and ROC analysis.

We show how this method performs in comparison with separate biomarkers and 

classical combination methods in the determination of outcome after aneurysmal 

subarachnoid hemorrhage with 8 parameters on a previously published dataset of 113 

patients. The panel classifies the patients better than the best parameter (p < 0.005). 

It also compares favorably with classical methods.

PanelomiX is a tool that allows to combine biomarkers with the ICBT method, and 

to analyse the robustness and performance of the panels with cross-validation and 

ROC analysis. ICBT was found to be an efficient and transparent approach to create 

panels. For the prediction of outcome after aneurysmal subarachnoid haemorrhage, 

we found a  panel  comprising  8  parameters  and thresholds  that  could  efficiently 

improve patients' classification in comparison with the individual biomarkers.

This  article  presents  the  main  results  of  my  thesis.  I  fully  conducted  the 

programming,  data  analysis,  statistics  and writing of  the  manuscript,  with  input 

from the other co-authors.
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Abstract

Background: In order to increase their predictive power, medical biomarkers can 
be combined into panels. However, the lack of ready-to-use tools, to obtain in­
terpretable results with rigorous validation, hampers the more widespread ap­
plication of panels and their translation into clinical practice.
Methods: The algorithms and platform we present here, called PanelomiX, com­
bines biomarkers and clinical scores by selecting concentration thresholds that 
provide optimal classification performance with a new method called iterative 
combination of biomarkers and thresholds (ICBT). Feature filtering is carried out 
with Random Forest when necessary. The robustness and performance of the 
obtained panels is analyzed with cross-validation and ROC analysis.
Results: We show how this method performs in comparison with separate bio­
markers and classical combination methods for the determination of outcome 
after aneurysmal subarachnoid haemorrhage with 8 parameters on a previously 
published dataset of 113 patients. The panel classifies the patients better than 
the best biomarker (p < 0.005). It also compares favourably well with classical 
methods.
Conclusions: PanelomiX is a tool that allows to combine biomarkers with the 
ICBT method, and to analyse the robustness and performance of the panels with 
cross-validation and ROC analysis. ICBT was found to be an efficient and trans­
parent approach to create panels. For the prediction of outcome after aneurys­
mal subarachnoid haemorrhage, we found a panel comprising 8 biomarkers and 
thresholds that could efficiently improve patients' classification in comparison 
with individual biomarkers.
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Background
The translation of biomarkers or combination of biomarkers into clinical practice 

is prevented by a number of critical factors1. First, methods and results can often be 
difficult to understand by non-experts; secondly, there is a general lack of robust 
validation steps,  which are critical   to ensure reproducible  results given the high 
biological variation and the lack of reproducibility of most experimental methods.

To overcome the former issue,  a combination method must present  clear  and 
easily  interpretable  results.  This  is  in  opposition  with  methods  such  as  neural 
networks or support vector machines (SVM), which may display high classification 
accuracy  when  carefully  tuned  by  trained  experts,  but  their  inner  workings  are 
difficult  to  understand  by  end-users  who  are  not  experts  in  statistical  learning. 
While black boxes are acceptable in some specific applications, they may not always 
be  suitable  in  expert  systems  for  medical  decision  making2,3,4.  In  contrast,  many 
methods present results in a user-friendly format and can be deemed as white-boxes. 
Medical  practitioners  have  long been used to clinical  scores  such as  the Hoffer-
Osmond test to diagnose schizophrenia5,6, or the Ranson score7 for the prognosis and 
operative  management  of  acute  pancreatitis.  This  kind  of  scores  have  become 
popular  because  they  are  clear  and  easy  to  interpret,  granting  access  to  the 
intermediate  results  of  individual  sub-tests.  It  was recently  applied to  assess  the 
probability of pulmonary embolism8 and acute pancreatitis9. 

Combining biomarkers is an application of statistical learning. Over the years, this 
field  has  developed  countless  methods  to  tackle  this  task.  Linear  or  logistic 
regression methods determine a factor, generally multiplicative, for each biomarker 
included in  the panel.  A straightforward interpretation of  these factors  is  to  see 
them as “weights” that increase the importance of the biomarkers having the highest 
factors.  Methods  based  on  decision  trees  also  provide  an  easy  interpretation, 
following a sequence of single binary biomarker splits on cut-off of the biomarker. 
As  long  as  the  tree  contains  only  a  fairly  limited  number  of  such  decisions  (or  
branches), these are easy to track allowing understanding exactly what is happening 
and why the decision was reached. Decision trees can be represented graphically 1 for 
easier understanding. Finally, the threshold-based method is a simplified version of 
the decision tree. All single biomarker tests are analyzed at the same time (instead of 
sequentially), and the number of positive tests represents a score, which is used for 
classification.

The  second  issue  is  most  of  the  time  associated  with  the  lack  of  a  robust 
validation step. Validation of a biomarker or a panel requires the availability of an 
independent test set to compute the true performance of the panel, avoiding the 
performance overestimation due to the over-fitting of the data during the learning 
process1.  If  an  independent  set  is  not  available,  computational  methods  such  as 
cross-validation or bootstrap allow the generation of such sets10,11. 

Useful  measures to evaluate the performance are sensitivity (the proportion of 
positive patients correctly detected by the test)  and specificity  (the proportion of 
negative patients correctly rejected by the test), as they give clear information about 
how well the patients are classified1. When no biomarker level cut-off is preferred or 
pre-defined, receiver operating characteristic  (ROC) analysis  can be performed to 
weight the trade-off between sensitivity and specificity10. The area under the ROC 
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curve  (AUC)  is  also  a  very  common  performance  metric  in  medical  decision 
making12, bioinformatics13 and statistical learning14. Finally, an important and often 
neglected step is to compare the performance of the panel with single biomarkers. A 
fair comparison would evaluate the panel and single biomarkers with the same tools 
(sensitivity and specificity or AUC) on the same independent test set or with the 
same cross-validation procedure1.  The  performance can then be compared either 
with McNemar's test (for sensitivity or specificity) or through ROC curves.

In  threshold-based  combinations,  thresholds  are  often  chosen  in  a  univariate 
manner. For example,  Ranson7 selected convenient prognostic sign cut-off  values 
outside the range of the mean plus or minus one standard deviation. Morrow and 
Braunwald15 chose the 99th percentile of the control distribution. Sabatine16 used the 
cut-offs  that  were  described  in  the  literature.  In  contrast,  Reynolds17 adopted  a 
multivariate  approach  and  tested  many  thresholds  by  10%  increments.  This 
approach takes into account the interaction that may arise when the biomarkers are 
combined.  In  PanelomiX  we  also  test  the  thresholds  in  a  multivariate  manner. 
Unlike the 10% increments adopted by Reynolds17, the set of cut-offs to be tested is 
selected from the local  maximas on the ROC curve.  This  guarantees an optimal 
classification,  and  is  more parsimonious  with the  non normally  distributed  data 
commonly found in clinical studies, where 10% increments of the highest values may 
not be as significant as those of the lowest ones. To minimize execution times, we 
developed several approaches to reduce the complexity and hence increase the speed 
of the search. As it has been shown to be an efficient feature selection method 11, we 
used  Random  Forest18,19 as  a  filtering  method  to  reduce  both  the  number  of 
biomarkers and of thresholds that accounts for the search space size.
The platform we propose here is called PanelomiX. It can combine biomarkers (molecule 
levels, clinical scores, etc.) with the threshold-based method, implemented with an 
exhaustive search algorithm called iterative combination of biomarkers and thresholds 
(ICBT). Results can be analyzed graphically, and the statistical comparison is performed with 
full or partial area under the ROC curve. This method has already been applied to predict 
the outcome of aneurysmal subarachnoid haemorrhage20 and to assess the progression of 
human African trypanosomiasis21. 

Methods

ICBT

Combining biomarkers

The  method  presented  here  is  called  ICBT.  A  threshold  is  defined  for  each 
biomarker by an optimization procedure that will be defined in the next sections. 
The score of the patient is the count of the biomarkers exceeding their threshold 
values.

We can write this score as:

S p=∑
i=1

n

I (X ip>T i ) , Equation 1

where Sp is the score for patient p, n is the number of biomarkers, Xip is the 
concentration of the ith biomarker in patient p, Ti is the threshold for the ith 
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biomarker and I(x), an indicator function, which takes the value of 1 for x = true and 
0 otherwise.

In the case of biomarker concentrations being higher in the control group than in 
the  disease  group,  it  is  transformed  by  taking  its  opposite  before  applying  the 
previous formula.

To determine the classification of a patient, a threshold on the score Sp is required 
and is designed Ts. Patients with a score Sp ≥ Ts are positive, negative otherwise.

Choosing the biomarker thresholds

The list of thresholds that will be tested in the ICBT search must be kept short to 
achieve low computation times. Candidate thresholds are selected as local maximas 
of the ROC curve, computed with pROC22. A local maxima is defined as a point of 
locally  maximal  distance  to  the  diagonal  line.  By  definition,  we  sort  the  list  of 
biomarkers, resulting in a list of increasing specificity (SP) and decreasing sensitivity 
(SE). The threshold  Ti is a is a local maximum if SP[i]  ≥ SP[i-1] and SE[i]  ≥ SE[i+1]. 
Thresholds which do not meet both criteria will not provide a better optimization in 
a panel because no patient is better classified.

Optimizing the panel

The  thresholds  are  optimized  with  an  exhaustive  search.  The  combinatorial 
complexity  of  testing  all  combinations  of  biomarkers  and  threshold  values  with 
ICBT can be calculated. Given n biomarkers, and panels with up to m biomarkers,  
the number C of combinations to test is given by:

C=∑
i= 1

m

(n
i )=∑

i= 1

m n!
i! (n−i ) !

. Equation 2

If there are t thresholds per biomarker:

I=∑
i=1

m

( n!
i! (n−i ) !

ti) . Equation 3

In a typical setup, one would test combinations of 5 or less biomarkers among 10, 
with  15  thresholds  per  biomarker.  This  corresponds  to  637  combinations  of 
biomarkers  to  test.  Counting  the  combination  of  the  thresholds,  it  sums  up  to 
202.409.025, which is still manageable with current desktop computers.

In most real applications, however, each biomarkers will have a different number 
of  thresholds.  If  T  is  a  vector  containing  the  number  of  thresholds  of  all  the 
biomarkers in combination j, a more precise estimate is given by:

I=∑
j=1

C

(∏ T j ) . Equation 4

Pre-filtering
When the computation time becomes too long, an additional step is necessary to 

reduce the number of biomarker thresholds. Multivariate filtering allows selecting 
the most interesting biomarkers11. In PanelomiX, Random Forest18,19 is employed as a 
multivariate  filter.  The main advantage  is  that  it  is  possible  to  analyze the  trees 
created during the process to deduce the biomarkers and thresholds appearing most 
often and that are thus the most interesting for a combination.

4



PanelomiX proceeds by stepwise elimination.  From the  N initial  biomarkers,  P 
biomarkers are selected, each associated with Q cut-offs. First a random forest with 
all the N biomarkers is created. The frequency of appearance of each biomarker in 
tree branches is extracted and the  N-1 biomarkers appearing most often are kept. 
These two steps are repeated until the target number  P of biomarkers is attained. 
Finally,  a  last  random  forest  is  computed  with  the  P remaining  biomarkers  to 
determine the Q  most frequently appearing thresholds. As each tree of the random 
forest is computed from a different set of patients, the cut-offs will differ slightly 
between the trees of the forest. To be more informative, the bootstrapped thresholds 
are therefore mapped to the original ones with Euclidean distance. Thresholds are 
then sorted by frequency and the Q first thresholds of each biomarker are selected 
for exhaustive searches.

Programming optimizations
At the programming level, several optimizations were implemented to accelerate 

the ICBT search. First, the compiled language Java was preferred over interpreted 
languages such as R, Perl or Python, which typically run much slower. Even though 
Java is an object-oriented language, object-oriented programming has a significant 
computational cost induced by the creation of multiple objects. Therefore the core 
of  the  search  program  does  not  create  any  object  and  uses  only  little  object-
orientation. To make use of all the cores available on the computer that runs the  
program, multi-threading was implemented with Java's Runnable interface.

If the choice of a programming language is extremely important for the sake of 
execution speed,  the  algorithmic  level  has  an even stronger  effect.  We will  now 
discuss three examples.

Firstly, recursive programming functions allow testing panels of an arbitrary size 
but  execute  much  slower  than  conventional  loops.  Therefore  PanelomiX  is 
implemented with programmatic loops rather than recursion.

Secondly, instead of computing sensitivity and specificity at each iteration of the 
algorithm, a pre-defined number of false positives is fixed at the beginning of the 
search,  derived from the target  specificity  and the number of  patients.  Only the 
number of false positives is  computed; the panel is further investigated only if it 
does not exceed this number. If the false positive count is lower, the sensitivity is 
computed and compared to that of panels previously found. Obviously this can be 
done only if the panel is set to optimize sensitivity at a minimal level of specificity or 
conversely  specificity  at  a  minimal  level  of  sensitivity.  Optimizing  the  overall 
accuracy does not allow computing a minimal number of false positives, as a lower 
count could be acceptable if the number of false negatives is low enough. Therefore 
panels optimizing the overall accuracy run significantly slower.

Finally,  a  list  of  panels  is  recorded  containing  all  panels  with  maximal 
performance. The list is cleared when a panel is found with a higher performance.

The selection of the biomarkers included in the panel is part of the algorithms, 
therefore it constitutes an embedded feature selection as defined by Dziuda et al.11.

Biomarkers  with missing  values  are  ignored.  Should the  user  wish to  perform 
missing  values  imputation,  it  must  be  performed  before  submitting  the  data  to 
PanelomiX (see23 for an in-depth review of the topic).
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Cross-validation
Cross-validation is a simple and widely used computational method to assess the 

performance and the robustness of a classification model1,10. PanelomiX features a 
cross-validation  procedure  for  panel  verification10.  The  primary  goal  of  cross-
validation is to test its performance in an unbiased manner and to produce graphical 
diagnostic plots for evaluating its  consistency and robustness.

PanelomiX generates several plots to assess the quality of the data. ROC curves 
analyses are performed on the individual biomarkers and the panel. Several plots are 
available only after cross-validation.

Centering

To make the predictions comparable  between the cross-validation steps which 
may produce panels of different length and with different  Ts,  they are centred as 
follows: first Ts is subtracted from the patient score S:

Y p=Sp−T s . Equation 5

 
Then the following transformation is applied:

Zp(Y p)={ Y p/T s ,Y p<0
Y p/(n−T s) ,Y p>0

. Equation 6

As a result, the centred vector  Z of patient scores is comprised in the interval [-
1;+1] and Ts=0.

ROC curves
PanelomiX performs and shows the ROC curves of both the individual biomarkers 

and  the  panel  using  the  pROC  tool22.  In  addition,  a  table  reporting  the  best 
thresholds with confidence intervals, and the comparison of the panel with the best 
biomarker (analyzed as panel composed of 1 biomarker to be comparable with the 
panels) is generated. Comparisons between two AUCs are performed with DeLong's 
test24,  and  between  two  pAUCs  with  the  bootstrap  test22 with  10000  stratified 
replicates. The ROC curves of the cross-validation are built as the mean of centered 
predictions (equations  5 and 6) over the k CV folds. For the cross-validation of the 
individual  biomarkers,  the  ICBT  algorithm  is  applied  with  n  =  1  and  no  other 
modification.

Implementation
The ICBT search is implemented in the Java programming language, while the 

other algorithms described above were implemented in R25. A perl CGI web interface 
is also available.

Case study

Patients

The PanelomiX methodology was applied to a previously published dataset of 113 
patients  with  aneurysmal  subarachnoid  haemorrhage  (aSAH).  The  goal  was  to 
identify  patients  at  risk  of  poor  outcome  six  months  after  aSAH,  who  require 
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specific healthcare management. Detailed results of the study are reported in Turck 
et al.20. We will only outline the features relevant to panel analysis.

Panel analysis

Panels  were  generated  as  described  with  five  biomarkers  (H-FABP,  S100-B, 
Troponin I, NKDA and UFD-1) and three clinical factors (WFNS, Modified Fisher 
score and age).  Cross-validation was performed to assess  the performance of the 
biomarkers, the panels and their stability.

Comparison with standard methods

The  results  obtained  with  ICBT  were  compared  with  other  methods:  logistic 
regression  with  the  glm and  step-wise  elimination  functions,  support  vector 
machines (SVM) from the  kernlab package26 (nu-regression with linear kernel), and 
decision trees from the  rpart package27,28. To be consistent with the ICBT method, 
both SVM and decision tree feature sets were determined with exhaustive search of 
all possible combinations. In addition, the predictions were centered as described in 
equations 5 and 6.

ROC sample size computations

Sample size for the comparison of two ROC curves was implemented according to 
Obuchowski and McClish 29 (equation 2). To avoid parametric hypotheses about the 
binormal distribution of the data, variances and covariances of the ROC curves were 
computed with bootstrap30.

Results and discussion

Training the panels
The ICBT algorithm was applied on the 113-patients cohort  of the aneurysmal 

subarachnoid hemorrhage study20. Combinations of the 8 biomarkers were tested. 
The optimization criterion was the best accuracy. On this cohort taken as a training 
set,  a  panel  containing  the  8  biomarkers,  i.e.  the  5  proteins  and  the  3  clinical 
parameters was found with the thresholds given in table 1.

Biomarke
r

H-
FABP

S100
b

Troponin 
I

NDK
A

UFD-
1

WFN
S

Age Fisher 
Score

Threshol
d

1.11 0.51 2.33 11.08 271.48 1.5 72.5 2.5

Unit μg/l μg/l μg/l μg/l μg/l N/A Year
s

N/A

Table 1: Biomarkers and thresholds in the panel

The performance of the panel was evaluated with two methods: sensitivity and 
specificity of a threshold, and area under the ROC curve (AUC). On the training set 
this panel showed 95% sensitivity and 90% specificity, corresponding to an AUC of 
95%.
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Cross-validation
Ten-fold  cross-validation  was  repeated  10  times.  Four  plots  that  allowed 

evaluating the stability of the panel with cross-validation are shown in figure 1.
► The marker selection frequency plot (figure 1A) shows the frequency of selection 

of  each  variable  biomarker  in  the  panels  trained  in  the  k  CV  folds.  A 
biomarker with a 100% frequency is selected in all panels. The frequency is 
weighted:  if  one step  of  the  cross-validation  yields  several  panels  each of 
them contributes less to the final frequency than panels which are unique in 
a cross-validation fold. Figure 1A shows that all eight biomarkers selected in 
the training panel are selected between 88% (Fisher score) and 100% (NDKA, 
H-FABP, S100b, WFNS) of the cross-validation panels.

► The panel size frequency plot displays the number of biomarkers in the panels, 
weighted  as  described  above.  Figure  1B  shows  that  69%  of  the  cross-
validation  panels  contained  8  biomarkers.  In  27%  of  the  panels  only  7 
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biomarkers  were  selected,  and  in  the  4%  remaining  6  biomarkers  were 
selected. No panel containing 5 or less biomarkers was encountered during 
the cross-validation.
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► The  panel  Ts frequency plot in figure 1C shows the score  Ts, determining how many 
biomarkers must be positive in a patient for the panel to be positive, weighted as 
described above. In figure 1C, 25% of the panels had  Ts = 3, 4%  Ts = 5 and the rest 
Ts = 4.

► The threshold stability plot (figure 1D) represents the biomarkers on the x-axis and the 
thresholds (as patient rank, not absolute value) on the y-axis of all panels found in 
the cross-validation. Each panel corresponds to a line joining its constituting set of 
biomarkers and thresholds. The figure shows that S100b has a very stable threshold, 
unlike  NDKA  or  UFD-1  that  showed  a  larger  variation.  In  H-FABP,  3  clusters 
appeared, corresponding to thresholds of 0.61μg/l (rank 22), 1.11μg/l (rank 33) and 
4.51μg/l (rank 84). This indicates that the cut-off of NDKA at 11.08μg/l found in the 
training panel is not as robust as the cut-off at 0.51μg/l found for S100b.

Performance evaluation
A ROC analysis is performed as described in the previous sections (figure 2). The 

panel found on the training set is plotted together with the cross-validation and the 
separate  biomarkers  (see  next  section).  On the  cross-validation,  panels  displayed 
65.9% sensitivity and 88.9% specificity, corresponding to an AUC of 88.6%.

Figure 3 shows the performance of the ICBT method on the training set and with 
cross-validation for panels of different sizes. Panels with 7 biomarkers are optimal in 
cross-validation,  with  an  AUC  (88.8%)  slightly  higher  than  panels  of  8  (88.6%). 
However the difference is minimal and it is difficult to determine the significance of 
this change. This indicates that the level of overfitting induced by ICBT is not too 
high and that the classification with panels is improved over separate biomarkers.
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Comparison with single biomarkers
Figure 3 shows that, even individual biomarkers are slightly over-fitted and display 

a lower AUC on the cross-validation (63%) than on the training sample (73%). To 
perform a fair comparison with ICBT, the cross-validation should not be compared 
with the biomarkers directly, but with cross-validated biomarkers. To that end, we 
used the ICBT algorithm where the threshold is  chosen on the training set,  and 
applied to the test set.

The two best separate biomarkers, H-FABP and WFNS, are plotted with ICBT in 
figure 2.  The cross-validation (dotted lines) show that panels of 8 biomarkers are 
superior to the individual biomarkers with an AUC of 89% compared to 76% (p = 
0.003) for WFNS and 68% (p = 1.5×10-6) for H-FABP.

Comparison with established methods
The ICBT method was compared with three established methods among the most 

widespread  in  biomarker  analysis:  logistic  regression,  SVM  and  decision  trees 
(recursive partitioning). The results are shown in figure 4. ICBT displayed the best 
AUC (89%), slightly but not significantly higher than SVM (82%, p=0.20) and logistic 
regression (81%, p=0.13). Only rpart decision trees had a significantly lower AUC of 
77% (p=0.03).

Computation time
As  stated  earlier,  the  combinations  of  all  8  biomarkers  and  all  local  maxima 

thresholds can be tested.  Table 2 shows the processing time to train a single panel 
and to perform ten 10-fold cross-validation. The cross-validation of panels of up to 8 
biomarkers took slightly less than 6 days to complete on a 4-cores machine.

Size of the panels, 
n

1 2 3 4 5 6 7 8

Training (moria) 0.25 0.34 1.22 8.24 92.92 707.66 2916.43 7082.01

CV (moria) 25.7
6

32.8
4

118.5
7

574.5
1

5407.5
7

53415.0
1

170226.
2

380656.3
7

Table 2: execution time (in seconds) of the panel of increasing size on an Intel Core2 Quad CPU Q9550 
at 2.83GHz processor. We show a simple training, and cross-validation (N=10, K=10).

Availability
We built a web interface run PanelomiX from remote computers. It will be made 

available soon. An package for the R statistical environment is also in preparation.

Conclusions
In this paper we demonstrated that the definition of biomarker panels through 

exhaustive  search  is  feasible  with  current  computers.  Panels  created  with  this 
methodology are robust and easy to understand even to non-mathematicians. They 
provide an efficient classification when compared with classical methods. We also 
proposed several approaches to reduce the complexity and increase the speed of the 
search for larger setups with only little loss of information.

11



Finally, we showed how it can be applied to answer to a real clinical question, that 
is,  the  outcome  prediction  ofl  patients  following  aneurysmal  subarachnoid 
haemorrhage.  We  showed  that  the  PanelomiX  algorithm  displayed  a  higher 
performance compared with classical methods, and that the panel had a superior 
performance than single biomarkers.

This study suffers from a few limitations. First, only one dataset was analysed in 
such details. Secondly, no results of Random Forest were reported here. Although we 
applied these algorithms to datasets with up to a thousand biomarkers (data not 
shown), more work to improve their robustness is required. Finally, the biomarkers 
tested here were discovered with univariate approaches. Some of them are relatively 
highly  correlated20,  and  multivariate  discovery  approaches  could  highlight 
biomarkers potentially more interesting in combination.

Future prospects include the application of this workflow to datasets with more 
biomarkers, for instance coming from gene or protein microarrays or single reaction 
monitoring experiments. It could also be applied to the discovery of new biomarkers  
with higher classification performance in combination with other biomarkers.
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
A multiparameter panel 
method for outcome 
prediction following 

aneurysmal subarachnoid 
hemorrhage



This chapter describes a  first application of PanelomiX. The purpose of this study 

was to improve the prediction of long-term irreversible brain damage during the 

acute  phase  of  patients  with  aneurysmal  subarachnoid  hemorrhage  (aSAH).  A 

pronostic  panel  was  developed  to  facilitate  early  outcome  prediction  following 

aSAH,  with  a  combination  of  clinical  scores  together  with  brain  injury-related 

biomarkers.

To this aim, two cohorts of patients (a selection set of 28 patients and a verification 

set of 113 patients) were prospectively enrolled, and venous blood samples collected 

within  12  hours  after  admission  and  within  48  h  following  aSAH  onset  were 

analyzed.  Five  proteins,  H-FABP,  NDKA,  UFD1,  S100-B  and  troponin  I,  were 

measured with classical immunoassays. Three clinical measurements, the WFNS, a 

modified Fisher score and age were assessed as biomarkers.  The outcome after 6 

months was evaluated with the Glasgow Outcome Score (GOS) and used as gold 

standard. A favorable outcome was defined when a 1 ≤ GOS ≤ 3, and an unfavorable 

outcome  was  defined  when  4  ≤  GOS  ≤  5.  The  classification  power  of  both  the 

biomarkers  and  the  panel  was  assessed  through  ROC  analysis  and  partial  AUC 

(pAUC) with pROC.

A panel comprising six biomarkers was found, comprising the WFNS score and the 5 

proteins,  H-FABP, S100-B, troponin I,  NDKA and UFD-1. The panel was positive 

when at least three of these parameters were simultaneously above the determined 

cutoff values. On the verification set of 113 patients, the prediction of unfavorable 

outcome displayed 70% sensitivity and 100% specificity.

In conclusion, this panel, including four brain injury-related proteins, one cardiac 

marker and a clinical score, could be a valuable tool to identify aSAH patients at risk 

of poor outcome.

In this article, I contributed to the data analysis and statistics. Specifically, I defined 

the multiparameter panel and conducted the ROC analysis. I was also involved in 

the remainder of the statistical analysis.
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Abstract Purpose: Accurate early
anticipation of long-term irreversible
brain damage during the acute phase
of patients with aneurysmal sub-
arachnoid hemorrhage (aSAH)
remains difficult. Using a combina-
tion of clinical scores together with
brain injury-related biomarkers
(H-FABP, NDKA, UFD1 and
S100b), this study aimed at develop-
ing a multiparameter prognostic panel
to facilitate early outcome prediction
following aSAH. Methods: Blood
samples of 141 aSAH patients from
two separated cohorts (sets of 28 and
113 patients) were prospectively
enrolled and analyzed with
14 months of delay. Patients were
admitted within 48 h following aSAH
onset. A venous blood sample was
withdrawn within 12 h after admis-
sion. H-FABP, NDKA, UFD1, S100b
and troponin I levels were determined
using classical immunoassays. The
World Federation of Neurological
Surgeons (WFNS) at admission and
the Glasgow Outcome Score (GOS)
at 6 months were evaluated.

Results: In the two cohorts, blood
concentration of H-FABP, S100b and
troponin I at admission significantly
predicted unfavorable outcome (GOS
1–2–3). A multivariate analysis
identified a six-parameter panel,
including WFNS, H-FABP, S100b,
troponin I, NDKA and UFD-1; when
at least three of these parameters were
simultaneously above cutoff values,
prediction of unfavorable outcome
reached around 70% sensitivity in
both cohorts for 100% specificity.
Conclusion: The use of this panel,
including four brain injury-related
proteins, one cardiac marker and a
clinical score, could be a valuable
tool to identify aSAH patients at risk
of poor outcome.

Keywords Aneurysmal
subarachnoid hemorrhage � H-FABP �
NDKA � S100b � Prognosis
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Introduction

Besides the high early mortality associated with aSAH,
long-term neurological morbidity is also a significant
problem in a substantial proportion of these patients [1,
2]. Identification of prognostic factors, aimed to predict
patient outcome, would help in the management and
decision making within this population. Clinical scores,
such as WFNS classification, demonstrated an associa-
tion between prognosis following aSAH and the
patient’s clinical neurological status at hospital admis-
sion [3]. Biochemical markers may provide additional
information about specific pathological disruptions and
recovery processes that occur in the central nervous
system following aSAH. In conjunction with clinical
status, these biomarkers may also inform prognosis and
guide therapeutic decisions to optimize treatments
[4, 5].

Over the past few years, a large number of biomarkers,
present in the blood and CSF, have raised interest in the
detection of aSAH patients with poor clinical outcome.
Nevertheless, the majority of these markers displayed
either low sensitivity or specificity to anticipate the
detection of patients with poor outcome [6, 7].

We recently explored post-mortem CSF as a model of
massive brain insult [8, 9]. In these studies, heart-fatty
acid binding protein (H-FABP), nucleotide diphosphate
kinase A (NDKA) and ubiquitin fusion degradation pro-
tein 1 (UFD-1) were over-expressed in post-mortem
compared to ante-mortem CSF and were validated as
potential brain damaged biomarkers [10–12]. In the
present study, we hypothesized that such a reliable plas-
matic marker may provide quantitative information
reflecting the prediction of aSAH patient outcome. The
objective of this study was to determine, immediately at
the hospital admission, S100b, H-FABP, troponin I,
NDKA and UFD-1 protein blood concentrations of
patients with spontaneous aSAH obtained in two sepa-
rated cohorts from the same institution. In addition to
specific clinical parameters, their potential predictive
power to detect poor 6-month outcome following aSAH
was evaluated [13–15].

Patients and methods

Population

The inclusion period was from July 2004 to December
2006 in the Pitié-Salpêtrière Hospital (Paris, France).
Inclusion criteria were clinical history of aSAH within the
last 2 days before admission with evidence of bleeding in
CT and presence of an aneurysm at cerebral angiography,
age above 18 years old and treatment by surgery or
coiling within 48 h after admission. Each eligible patient

was admitted in the intensive care unit (ICU) within the
2 days after aSAH symptom onset (mean 7 ± 18 h, min
3 h and max 48 h), and a unique venous blood sample
was withdrawn within 12 h after ICU admission (mean
24 ± 13.9 h). Fifty-nine patients were excluded due to
either a delay of more than 48 h after the onset of
symptoms (n = 55) or missing clinical information
(n = 3). A total of 199 consecutive patients were evalu-
ated, and 141 were finally enrolled in this study.

Samples were sent from Paris to Geneva in two
distinct sets of samples with a 14-month period delay.
As samples were analyzed immediately in Geneva,
results between the two sets displayed a 14-month
period delay explaining why the two sets were con-
sidered separately. The selection set had 28 patients (8
men and 20 women; age range 26–84 years) and the
verification set 113 patients (42 men and 71 women;
age range 18–81 years). Fifty patients (35.4% of the
study sample) had an unfavorable outcome at 6 months
(GOS score 1–3), and 91 (65%) patients had a favor-
able outcome (GOS score 4–5). The two sets are
described in Table 1.

The local ethical committee (Comité de Protection des
Personnes, Pitié-Salpêtrière, Paris, France) approved the
study. In accordance with the Helsinki Declaration,
written informed consent was obtained from the patient or
patient’s relatives.

Clinical monitoring and treatment

At admission, clinical severity was assessed using the
WFNS score [16]. The initial CT was reviewed by an
independent radiologist blinded to clinical history and
classified according to the original Fisher score [17]
modified as follows: grade 1, no subarachnoid blood;
grade 2, broad diffusion of subarachnoid blood; grade 3,
with clots or thick layers of blood; grade 4, intraventric-
ular hemorrhage or intracerebral hematoma, no clot;
grade 5, intraventricular hemorrhage or intracerebral
hematoma with clot [18–20] and qualified presence or
absence of acute hydrocephalus. The neurological out-
come was assessed by phone interviews using the
Glasgow Outcome Scale (GOS) [21] at 6 months. The
type of treatment (surgery or coiling) was decided
according to both location and size of the aneurysm by the
neurosurgeon and the neuro-radiologist. Seizures were
routinely prevented by gabapentin (600 mg t.i.d., per os).
A central venous line and an arterial catheter were
inserted in most of the patients before and/or after surgery
or coiling. An external ventricular drain (Sophysa, Orsay,
France) was inserted in patients with CT evidence of
hydrocephalus, high WFNS grade or a trans-cranial
Doppler (TCD) pulsatility index greater than 1.2, sug-
gesting intracranial pressure (ICP) elevation. The line was
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connected to an external pressure strain gauge to monitor
ICP. Early ICP elevation was defined as ICP above
20 mmHg under sedation but without drainage. Moni-
toring and treatment of vasospasm are described in Online
Data Supplement 1.

H-FABP, S100b, NDKA, UFD1 and troponin I
measurements

Cardiac troponin I serum concentration was systemati-
cally measured using the Stratus Analyzer (Dade, Massy,
France). S100b concentration was measured with an im-
munoluminometric sandwich assay on a LIA-mat 300
analyzer (Byk-Sangtec France Laboratories, Le Mée sur
Seine, France) using the manufacturer’s reagents [22].
H-FABP concentration was determined with a commer-
cially available enzyme-linked immunosorbent assay
(ELISA) (Hycult Biotechnology, Uden, The Netherlands)
according to the manufacturer’s instructions. The

concentrations of NDKA and UFD1 were determined by
home-made ELISA as previously described by Allard
et al. [11, 12]. For more details, see the Online Data
Supplement 2.

Data analysis and statistics

SPSS software (version 15, SPSS Inc., Chicago, IL), R
(URL http://www.R-project.org) and PERL (ActivePerl
version 5.8.8.820, ActiveState Software Inc.) were used
for data analysis.

Because protein concentrations did not show normal
distributions (Kolmogorov–Smirnov test), between-group
differences were tested with the non-parametric Mann–
Whitney U test. The Fisher exact test was used for cate-
gorical variables. Statistical significance was set at 0.05
(two-tailed tests).

The dichotomized 6-month GOS score was considered
as the main outcome variable, with ranges 1–2–3 and 4–5
reflecting unfavorable and favorable outcome, respectively.

Table 1 Main characteristics of the population

28-Patient set 113-Patient set

GOS 1–2–3
(N = 9)

GOS 4–5
(N = 19)

Pa GOS 1–2–3
(N = 41)

GOS 4–5
(N = 72)

Pa

Gender 1 0.07
# n% 3 (33.3) 5 (26.3) 20 (48.8) 22(30.6)
$ n% 6 (66.4) 14 (73.7) 21(51.2) 50(69.4)

Age (years) 0.86 0.043
Median (range) 56 (49–75) 57 (26–84) 55.0 (31–81) 49.5 (18–76)
Mean (±SD) 56.9 (±7.4) 53.5 (±14.1) 54.9 (±13.3) 48.9 (±13.8)

Time of blood drawing (h) 0.74 0.73
Median (range) 24 (6–24) 22.5 (11–48) 24 (10–48) 24 (5–48)
Mean (±SD) 20.4 (±6.3) 22.9 (±11.8) 21.8 (±10.5) 20.9 (±9.9)

WFNS score 0.026 \0.0001
1–2 n% 4 (44.4) 18 (94.8) 14 (34.1) 57 (79.2)
3–4–5 n% 5 (55.6) 1 (5.2) 27 (67.5) 15 (20.8)

Modified Fisher score 0.14 \0.0001
1–2 n% 0 (0.0) 5 (26.3) 0 (0.0) 19 (26.4)
3–4–5 n% 9 (100.0) 14 (73.8) 41 (100.0) 53 (73.6)

Vasospasm 0.08 0.48
No n% 6 (66.7) 18 (94.8) 27 (65.9) 54 (75.0)
Yes n% 3 (33.3) 1 (5.2) 14 (34.1) 19 (25.0)

Location 0.23 0.32
MCA n% 3 (33.3) 1 (5.2) 12 (29.3) 11 (15.3)
CA n% 3 (33.3) 10 (52.7) 19 (46.3) 36 (50.0)
ICA/PCA n% 3 (33.3) 7 (36.9) 10 (24.4) 23 (31.9)

VBS n% 0 1 (5.2) 0 (0.0) 2 (2.8)
Treatment 0.12 0.29
No n% 1 (11.1) 0 2 (4.9) 2 (2.8)
Coiling n% 6 (66.7) 18 (94.8) 29 (70.7) 60 (83.3)
Surgery n% 2 (22.2) 1 (5.2) 10 (24.4) 10 (13.9)

Seizures 1 0.89
No n% 6 (66.7) 13 (68.4) 33 (80.5) 58 (80.0)
Yes n% 3 (33.3) 6 (31.6) 8 (19.5) 14 (19.4)

Age non-parametric Mann–Whitney U test
MCA middle cerebral artery, CA cerebral anterior artery, ICA internal carotid artery, PCA posterior communicating artery, VBS vertebro
basilar system
a Fisher exact test
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The different markers (H-FABP, S100b, troponin I,
NDKA, UFD-1) as well as clinical data were considered
as possible predictors.

For each individual predictor, a receiver-operating
characteristic (ROC) curve was determined in each
cohort, and a cutoff value was selected as the threshold
predicting poor outcome with specificity [90%. Partial
ROC AUCs (pAUC) [23, 24] and 95% confidence inter-
vals (CI) were calculated using an adaptation of
previously described algorithms [25]. pAUCs were
restricted between 90 and 100% specificity considering
that an efficient predictor in clinical practice should be
able to identify clearly at least nine out of ten patients as
having a favorable prognosis when the test was negative.
P values for the difference between two pAUCs were
computed based on [26] where standard deviation was
determined by bootstrap as described above.

Univariate and multivariate logistic regressions with
stepwise backward selection were performed using SPSS
software and are described in Online Data Supplements 3
and 4, respectively.

Panel development

Panel selection was performed essentially as described by
Reynolds et al. [27, 28]. Briefly, the optimized cutoff
values were obtained by iterative permutation-response
calculations using all available parameters. Each cutoff
value was changed iteratively by quantiles of 2% incre-
ment, and sensitivity was determined after each iteration
until a maximum of sensitivity was achieved for 100%
specificity. Binary clinical parameters (hydrocephaly,

vasospasm, sex and statin treatment) were recorded as 0/1
(absent/present), and a unique cutoff of 0.5 was used.

Results

Patients with favorable and unfavorable outcomes did not
significantly differ with respect to gender. Age of patients
with poor outcome at 6 months was slightly higher in the
113-patient set, suggesting that age might be considered as
a prognostic factor. WNFS score was significantly higher in
patients with a poor outcome than favorable outcome
(Fisher’s exact test, P = 0.026 and\0.0001 in the 28- and
113-patient sets, respectively). A modified Fisher score,
estimating severity of aSAH, did not significantly differ
according to outcome in the 28-patient set, whereas in the
113-patient set, severe aSAH (high modified Fisher score)
was significantly associated with unfavorable outcome
(Fisher’s exact test, P \ 0.0001). No associations were
found between long-term neurological outcome and time
course of blood samples drawings, post-hemorrhagic sei-
zures, location of the aneurysm, occurrence of vasospasm
and treatment modality (coiling vs. surgery). Demographic
characteristics are shown in Table 1.

As shown in Table 2, baseline H-FABP, S100b and
troponin I levels were significantly elevated in the blood
of patients with an unfavorable outcome compared to
patients with a favorable outcome. Initial NDKA and
UFD-1 levels were unable to discriminate between
favorable and unfavorable outcome in the 28-patient set,
but in the 113-patient set, the NDKA level was marginally
higher in patients with a poor 6-month outcome

Table 2 H-FABP, S100b, troponin I, NDKA and UFD-1 concentrations (lg/l) at admission according to the patient outcome at 6 months
in the 28- and 113-patient sets

28-Patient set 113-Patient set

GOS 1–2–3
(N = 9)

GOS 4–5
(N = 19)

P GOS 1–2–3
(N = 41)

GOS 4–5
(N = 72)

P

H-FABP (lg/l)
Median (range) 4.65 (1.73–62.2) 1.79 (0.86–9.03) 0.01 3.59 (0.63–67.36) 1.35 (0–44.43) \0.0001
Mean (±SD) 12.06 (±19.16) 2.82 (±2.13) 10.33 (±16.30) 3.50 (±7.33)

S100b (lg/l)
Median (range) 0.33 (0.17–0.46) 0.15 (0.06–0.32) 0.04 0.30 (0.03–2.07) 0.11 (0.04–0.5) \0.0001
Mean (±SD) 0.32 (±0.14) 0.163 (±0.84) 0.39 (±0.37) 0.16 (±0.13)

Troponin I (lg/l)
Median (range) 0.50 (0.04–6.4) 0.05 (0.04–2.62) 0.04 0.36 (0.03–155) 0.05 (0.03–4.4) \0.0001
Mean (±SD) 1.92 (±2.54) 1.15 (±3.18) 5.51 (±24.2) 0.32 (±0.77)

NDKA (lg/l)
Median (range) 13.74 (0–46.39) 13.98 (2.31–32.81) 0.92 13.56 (3.9–419.2) 10.95 (3.0–80.3) 0.05
Mean (±SD) 15.6 (±13.76) 15.9 (±10.45) 28.08 (±64.2) 14.86 (±12.8)

UFD-1 (lg/l)
Median (range) 71.0 (1.83–24.55) 12.6 (0.39–33.8) 0.33 83.73 (3.61–1792) 84.48 (10.4–553.2) 0.99
Mean (±SD) 11.23 (±8.14) 15.06 (±10.21) 169.3 (±291.6) 108.3 (±87.9)

P = Non-parametric Mann–Whitney U test. P \ 0.05 is considered significant
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(P = 0.073, Mann–Whitney U test). No significant dif-
ference was observed in the molecule concentrations as a
function of time of blood drawing (data not shown).

The prediction performances of individual molecules,
neurological scales and age for predicting a poor outcome
were evaluated with ROC curves and pAUC (Fig. 1).
Thresholds of individual predictors were chosen to pro-
vide specificity above 90% except for WFNS and
modified Fisher where the cutoff value was fixed to sep-
arate patients according to their clinical pattern. With a
threshold strictly above 2, WFNS allowed to discriminate
patients with poor and favorable outcome with 55.6%

sensitivity (SE) and 97.4% specificity (SP) in the
28-patient set and 67.5% SE for 79.2% SP in the
113-patient set. The modified Fisher scale (threshold[2)
provided perfect 100% sensitivity in the two sample sets
but low specificity (26.4 vs. 29.0%).

In the 28-patient set, H-FABP, S100b and troponin I
displayed 44.4, 33.0 and 22.2% SE for 94.7, 94.0 and
94.7% SP, respectively. Similar performances were
obtained in the 113-patient set. NDKA, UFD1 and age led
to relatively poor prediction of outcome at 6 months in the
two sets (Tables 3, 4). Univariate and multivariate logistic
regressions with stepwise backward selection were used to
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Fig. 1 pAUC of the different
parameters on the selection
(N = 28) and verification
(N = 113) sets. Grey boxes
correspond to the maximal area
(10%) between 90 and 100%
SP if a perfect ROC curve was
obtained. Dark boxes
correspond to the partial area
under the curve
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validate predictors of poor outcome. Results are presented
in Online Data Supplements 3 and 4, respectively.

Provided the low sensitivity obtained with individual
predictors, we tested combinations of all parameters on
the 28-patient set to select a panel that could improve
outcome prediction. The iterative permutation-response
approach led to a six-parameter panel including WFNS,
H-FABP, S100b, troponin I, NDKA and UFD-1. The
panel result was defined as positive if at least three out of
the six selected parameters were simultaneously above
threshold with 77% (95% CI: 50.0–100.0%) SE for 100%
(95% CI: 100.0–100.0) SP. This panel tested on the 113-
patient set presented extremely similar performances with
68.3% (95% CI: 53.5–82.2) SE for 100% (95% CI:
100.0–100.0) SP. The panel was confirmed by a ten-fold
cross-validation (data not shown). The six-parameter
panel allowed to increase sensitivity by about 25% when
compared to the best single predictor (H-FABP,
SE: 45%). In addition, pAUC of the panel was signifi-
cantly higher than pAUC of WFNS (P \ 0.0002). The
relative performance of each marker was also evaluated
by removing them one by one from the panel and

recalculating sensitivity and specificity. The results
obtained are shown in Online Data Supplement 5.

Importantly including both clinical and laboratory vari-
ables into the same panel was found to be superior to
approaches combining either purely clinical or merely lab-
oratory variables. Indeed, a clinical panel including WFNS,
modified Fisher scale and age displayed only 22% SE for
100% SP to predict poor outcome in the 113-patient set. The
presence of hydrocephaly and occurrence of vasospasm in
the clinical panel did not improve the discriminating per-
formance of the clinical panel. In line with this, a panel
containing only the five laboratory variables reached only
50% SE for 100% SP (Fig. 1). pAUC of our panel was sig-
nificantly higher than pAUC of both purely clinical and
laboratory panels (P = 0.0004 and 0.05, respectively.)

Discussion

In this prospective study, including 141 patients from two
separated cohorts of patients presenting aSAH, we have

Table 3 Partial area under the curve (pAUC), sensitivities (SE) and specificities (SP) for individual parameters and the panel on the
28-patient set

28-Patient set

Partial AUC
(95% CI)

Threshold SE (%)
(95% CI)

SP (%)
(95% CI)

WFNS 3.0% (0.0–8.2) [2a 55.6 (20.0–88.9) 94.1 (81.3–100)
Modified Fisher 1.7% (0.0–3.8) [2a 100 (100–100) 29.4 (8.3–52.9)
Age 1.1% (0.0–3.6) 72.5 years old 11.1 (0.0–33.3) 100 (100–100)
H-FABP 5.1% (1.7–8.8) 6.3 lg/l 44.4 (12.5–80.0) 100 (100–100)
S100b 2.0% (0.0–6.7) 0.37 lg/l 33.3 (0.0–66.7) 94.1 (80.0–100)
Troponin I 0.9% (0.0–6.7) 5.3 lg/l 22.2 (0.0–50.0) 94.1 (80.0–100)
NDKA 1.1% (0.0–3.8) 31.9 lg/l 11.1 (0–37.5) 100 (100–100)
UFD-1 0.0% (0.0–1.4) 24.87 lg/l 0 (0–0) 76.5 (53.8–94.4)

a A threshlod strictly above two for the neurological scores means that patients have been dichotomized into two groups: patients with
WFNS 1–2 and patients with WFNS 3–5 or patients with modified Fisher 1–2 and patients with modified Fisher 3–5

Table 4 Partial area under the curve (pAUC), sensitivities (SE) and specificities (SP) for individual parameters and the panel on the two
sets

113-Patient set

Partial AUC
(95% CI)

Threshold SE (%)
(95% CI)

SP (%)
(95% CI)

WFNS 3.3% (1.7–5.4) [2a 65.9 (51.1–79.2) 79.1 (69.6–88.1)
Modified Fisher 2.1% (0.9–3.6) [2a 100 (100–100) 26.4 (16.7–36.8)
Age 1.5% (0.6–2.6) 67.5 years old 20.4 (9.5–32.6) 92.0 (86.0–97.4)
H-FABP 1.9% (0.5–4.0) 5.9 lg/l 41.4 (26.5–56.8) 91.7 (84.7–97.3)
S100b 3.3% (1.9–4.9) 0.48 lg/l 31.7 (17.8–46.5) 97.2 (92.9–100)
Troponin I 2.5% (1.2–4.3) 1.56 lg/l 29.3 (15.6–43.9) 93.1 (86.8–98.6)
NDKA 1.0% (0.2–2.5) 30.4 lg/l 19.5 (8.3–32.4) 93.1 (86.5–98.6)
UFD-1 1.7% (0.6–3.0) 271.5 lg/l 19.5 (7.9–32.5) 97.2 (93.0– 100)

a A threshlod strictly above two for the neurological scores means that patients have been dichotomized in two groups: patients with
WFNS 1–2 and patients with WFNS 3–5 or patients with modified Fisher 1–2 and patients with modified Fisher 3–5

112



demonstrated for the first time that elevated serum con-
centration of H-FABP at hospital admission was able to
predict unfavorable clinical prognosis at 6 months. More
importantly, the development of a multiparameter panel
strategy, using a combination of blood-borne biomarkers
together with a clinical score (WFNS), considerably
improved unfavorable outcome prediction compared to
solely clinical parameters, alone or in combination, by
allowing identification of poor neurological outcome in
patients with a sensitivity around 70% and a specificity of
100% following aSAH.

Identification of predictors is an important aspect of
the management and study of patients with aSAH. Several
clinical factors have been identified as independent pre-
dictors of patient outcome following aSAH [3, 29, 30].
Among them, clinical scores describing the patient’s
neurological condition at hospital admission were repor-
ted to correlate with long-term outcome [31, 32]. In line
with these observations, we also showed that, when tested
individually, the WFNS score at hospital admission
appeared to be the strongest predictor of neurological
outcome in our patient sample. In agreement with previ-
ous studies [17, 33], we found a significant correlation
between the amount of blood observed in the initial CT
scan and long-term neurological outcome. Although the
majority of earlier studies designed age as a major inde-
pendent prognostic factor [34, 35], a recent, prospectively
conducted trial including 177 poor WFNS grade patients
with aSAH did not find a significant association between
age and outcome [36]. In our cohort, the age of patients
presenting a poor GOS at 6 months was slightly but sig-
nificantly higher than those with a favorable course,
suggesting a potential influence of age as a prognostic
factor. In contrast, we found no significant association
between occurrence of vasospasm and seizure activity
during hospital stay and long-term GOS outcome. Also,
neither the aneurysm location site nor the treatment
modality (i.e., clipping versus coiling) showed significant
association with patient prognosis.

To our knowledge, this is the first study investigating
the role of the recently identified, brain-related biomark-
ers H-FABP, NDKA and UFD-1 in the context of aSAH.
These molecules have recently been shown to be reliable
early blood biomarkers in ischemic stroke. H-FABP is a
well-known marker for myocardial injury [37, 38] and
also appears to be a potential biomarker of stroke [10, 39].
Results of the present study revealed that H-FABP was
one of the best outcome predictors at 6 months (42.5% SE
and 92% SP), and its performance was as high as WFNS.
In addition, H-FABP was an important parameter of the
panel, since its absence induces a decrease of the sensi-
tivity from 70 to 47%.

NDKA (also called NM23-H1) is an ubiquitous
enzyme that catalyzes the transfer of the terminal phos-
phate of ATP to (deoxy)nucleotide triphosphates via the
formation of a high-energy phosphorylated intermediate.

Specific expression pattern and enzymatic activity of this
protein have been demonstrated in the brain [40]. In
stroke, NDKA was described as an early biomarker since
its level was already elevated in blood of patients within
3 h after the stroke onset [11]. In the present aSAH study,
NDKA alone appeared to be an unsatisfactory predictor of
outcome at 6 months. However, in combination with other
parameters, its presence drastically increased the sensi-
tivity of the panel, suggesting that its strength resides in
the detection of patients not included by other predictors.

Several studies highlighted an increasing interest in
S100b, a calcium-binding protein, in various brain damage
disorders, and especially in aSAH [6, 41]. In these studies,
elevated levels of S100b correlated with neurological
deficit and outcome at 6 months or 1 year [18–20]. Our
present results are in line with these observations, showing
a 35% SE and 96% SP of this protein in the prediction of
neurological outcome at 6 months.

The commonly used cardiac biomarker troponin I, also
known as cardiac isoform of troponin I (cTnI), has pre-
viously been reported to be correlated with neurological
outcome following aSAH [42]. In fact, cardiopulmonary
dysfunctions could occur after aSAH, but their impacts
in the mortality rate or outcome remain controversial
[43, 44]. In our study, troponin I permitted to discriminate
patients according to their outcome with 30% SE and
93% SP, and, in combination with other markers, it
increased the sensitivity of the panel from 42 to 70%.

Outcome prediction based on a single measured bio-
marker or clinical score has led so far to unsatisfactory
levels of sensitivity and, more importantly, specificity.
Therefore, there is an urgent need to combine multiple
parameters to achieve higher sensitivity without sacrificing
specificity. Many studies have evaluated a multitude of
classification approaches to improve the prediction per-
formance [45]. In the present study, we used a
multiparametric combination of blood-borne protein val-
ues and clinical scores. The iterative permutation-response
highlighted that a six-parameter panel comprising WFNS,
H-FABP, S100b, troponin I, NDKA and UFD-1 could be
used for the prediction of aSAH outcome at 6 months. The
six-parameter panel provided increasing prognosis sensi-
tivity (70%) for 100% SP compared with any other
parameter individually or purely clinical and laboratory
panels (22% and 50% SE, respectively), when at least three
out of the six predictors are above their cutoff values.

The future challenge for these biomarkers and panel is
their translation in clinical practice. Several drawbacks
must be solved to consider their real prospective impact in
the management of SAH patients. Among them, the
development of multiplex point-of-care systems should
considerably reduce the time of analyses (between 15 and
30 min), making possible their use in routine clinical
practice. Alternatively, new emerging ELISA technolo-
gies, such as bead suspension arrays, can also quantitate
simultaneously several biomarkers in a unique patient
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sample, restricting the volume need for analyses, and this
in a fast and reproducible manner. Finally, the panel
interpretation (binary response: positive or negative) is
simple enough to be used in clinical practice.
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
A Combined CXCL10, CXCL8 
and H-FABP Panel for the 
Staging of Human African 
Trypanosomiasis Patients



This  chapter  describes  a  second  application  of  PanelomiX,  on  Human  African 

trypanosomiasis  (HAT),  also known as  sleeping sickness.  It  is  a parasitic  tropical 

disease  that  progresses  from  the  first,  haemolymphatic  stage  to  a  neurological 

second stage where the parasites invades the central nervous system. As treatment 

depends on the stage of disease,  there is  a critical  need for  tools  that  efficiently 

discriminate the two stages of HAT. At the same time, and because the parasite hits  

essentially poor people in developing African countries, an additional requirement 

for a potential panel is an extremely low cost. Therefore, only a very limited number 

of biomarkers can be included in the combination to indicate the CNS invasion by 

the parasite. 

One hundred Cerebrospinal  fluid (CSF) samples originating from parasitologically 

confirmed Trypanosoma brucei gambiense patients were analysed: 21 from stage 1 

(no trypanosomes in CSF and ≤ 5 WBC/mL) and 79 from stage 2 (trypanosomes in 

CSF or > 5 WBC/mL) patients. The concentration of H-FABP, GSTP-1 and S100b in 

CSF was measured by ELISA. The levels of thirteen inflammation-related proteins 

(IL-1ra, IL-1b, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-c, TNF-a, CCL2, CCL4, CXCL8 

and CXCL10) were determined by bead suspension arrays. Patients were staged on 

the basis of CSF white blood cell (WBC) count and presence of parasites in CSF.

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity 

of 84% and specificity of 100%. A panel of 3 proteins, CXCL10, CXCL8 and H-FABP, 

improved the detection of stage 2 patients to 97% sensitivity and 100% specificity. 

This study highlights the value of CXCL10 as a single biomarker for staging T. b.  

gambiense-infected HAT patients.  Further combination of CXCL10 with H-FABP 

and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these 

molecules could potentially be markers of other CNS infections and disorders, these 

results  should  be  validated  in  a  larger  multi-centric  cohort  including  other 

inflammatory diseases such as cerebral malaria and active tuberculosis. 

This article is mainly the work of the two first authors. My contribution is centered 

around the data analysis. I determined the panel and conducted the ROC analysis.
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Abstract

Background: Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It
progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central
nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently
discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and
inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods: Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients.
Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred
samples were analysed: 21 from stage 1 (no trypanosomes in CSF and #5 WBC/mL) and 79 from stage 2 (trypanosomes in
CSF and/or .5 WBC/mL) patients. The concentration of H-FABP, GSTP-1 and S100b in CSF was measured by ELISA. The levels
of thirteen inflammation-related proteins (IL-1ra, IL-1b, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-c, TNF-a, CCL2, CCL4, CXCL8 and
CXCL10) were determined by bead suspension arrays.

Results: CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of
100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the
detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion: This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT
patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT
patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be
validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active
tuberculosis.
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Introduction

Human African trypanosomiasis (HAT), also called sleeping

sickness, is a parasitic disease that occurs in sub-Saharan Africa.

More than sixty million people are at risk of being infected. The

World Health Organization (WHO) has reported impressive

progress since 1995 in the control of HAT, leading to a substantial

reduction of new cases detected yearly to 10’800 in 2007. The total

number of cases is now estimated to be between 50’000 and

70’000 per year [1].

The parasite that causes HAT belongs to the Trypanosoma brucei

family with two subspecies, Trypanosoma brucei gambiense and

Trypanosoma brucei rhodesiense, responsible for the human disease.

Trypanosomes are transmitted to humans by the bite of a tsetse fly

and are initially confined to the blood, lymph nodes and

peripheral tissues. This corresponds to the first stage (early stage;

or haemolymphatic stage) of the disease. After an unknown period

that varies from weeks to months, the parasites invade the central

nervous system (CNS). This is called the second stage (late stage; or

neurologic; or meningo-encephalitic stage) of HAT.

Clinical symptoms of HAT are not specific for the disease, and

definite diagnosis is always based on parasitological examination of

body fluids. The card agglutination test for trypanosomiasis

(CATT), an assay that is based on trypanosome-specific antibody

detection, is widely used for mass screening. However, it suffers

from limited sensitivity and restricted to the T. b. gambiense form of
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the disease [2]. A positive parasitological diagnosis must always be

followed by stage determination, which is performed by exami-

nation of the cerebrospinal fluid (CSF). This is a vital step in the

diagnostic process, as the treatment differs depending on the stage

of the disease. If HAT patients are not treated, they always die [3–

5]. Early stage drugs are inefficient for late stage patients, and

additionally, melarsoprol (MelB or Arsobal), which has been the

most widely used drug to treat late stage patient, has itself an

overall mortality rate of 5% due to its toxicity [6]. As a

consequence, melarsoprol has in many countries been replaced

by eflornithine as the first line treatment for T. b. gambiense

infections but the latter drug suffers from important logistic

constraints.

WHO defined late-stage HAT by the following criteria:

presence of trypanosomes in CSF and/or an elevated WBC count

above 5/mL of CSF [7]. However, presence of WBC in the CSF is

not specific for the disease and parasite detection methods are not

sensitive enough [8]. Furthermore, recent studies suggest the need

to increase the cutoff between the first and second stages to 10 or

20 WBC/mL [2,8,9]. This has contributed to the concept of a

potential intermediate stage of HAT with CSF WBC count .5

and #20 WBC/mL [10]. There is therefore a critical need for a

reliable and efficient staging tool that would replace or

complement trypanosome detection and WBC count.

Parasite migration and invasion of the CNS causes a

neuroinflammatory process, associated with activation of microg-

lial cells and astrocytes [11,12], and infiltration of the CNS with

leukocytes (predominantly mononuclear cells) [13]. Cytokines and

chemokines are known to be actively involved in this process.

Thus, TNF-a, IL-6, CXCL8 and IL-10 concentrations have been

demonstrated to be elevated in the CSF of late-stage patients

[11,14] and the IFN-c level has been reported as associated with

the severity of the late stage disease [15]. The levels of CCL2, IL-

1b and CXCL8 have also been correlated with presence of

parasites in the CSF and neurological signs in HAT patients [16].

Additionally, levels of IL-1ra, G-CSF, VEGF, CCL4 and

CXCL10 were found modulated in either the CSF or plasma of

patients suffering from cerebral malaria [17–19], and could

potentially be also modulated in HAT patients.

Proteomic analysis of human body fluids has become an

important approach for biomarkers discovery [20]. In this context,

we recently explored the concept of post-mortem CSF as a model of

massive and global brain insult [21], which allowed the

identification of potential brain damage biomarkers by proteomics

strategies. Indeed, heart-fatty acid binding protein (H-FABP),

identified from post-mortem CSF, has been validated as a marker of

stroke [22] and Creutzfeldt-Jakob disease [23], respectively.

Similarly, GSTP-1 was also found over-expressed in post-mortem

CSF [24] compared to ante-mortem, and was recently validated as

an early diagnostic marker of stroke and traumatic brain injury

(Turck et al. Personal communication). Additionally, S100b
protein has already been demonstrated to be a marker of blood-

brain barrier (BBB) and neuronal damage [25] as well as a useful

serum biomarker of CNS injury and a potential tool for predicting

clinical outcome after brain damage [26].

In this context, we hypothesized that markers of brain damage

discovered by proteomic strategies as well as inflammation-related

proteins could individually or in combination indicate the CNS

invasion by the trypanosome parasite. We measured the CSF

concentrations of H-FABP, GSTP-1, S100b and thirteen inflam-

mation-related proteins (IL-1ra, IL-1b, IL-6, IL-9, IL-10, G-CSF,

VEGF, IFN-c, TNF-a, CCL2, CCL4, CXCL8 and CXCL10) and

evaluated their potential for staging the disease.

Material and Methods

Samples
Samples originated from a prospective observational study on

shortening of post treatment follow-up in gambiense human African

trypanosomiasis (THARSAT), conducted between 2005 and 2008

at Dipumba hospital in Mbuji-Mayi (Kasai Oriental province,

Democratic Republic of the Congo). Details of the THARSAT

study design and results are reported elsewhere (D. Mumba Ngoyi,

in preparation). The study protocol was approved by the Ministry

of Health, Kinshasa, DRC and by the Ethical Committee of the

University of Antwerp, Belgium. Briefly, 360 T. b. gambiense

patients in total were enrolled into the THARSAT study.

Inclusion criteria were 1u confirmed presence of trypanosomes

in lymph nodes, blood or CSF; 2u$12 years old and; 3u living

within a perimeter of 100 km around Mbuji-Mayi. Exclusion

criteria were 1u pregnancy; 2u no guarantee for follow-up; 3u
moribund; 4u haemorrhagic CSF before treatment and; 5u
presence of another serious illness (active tuberculosis - treated

or not, bacterial or cryptococcal meningitis). HIV and malaria

were not considered as exclusion criteria. Each patient underwent

a clinical examination. Staging of disease was based on CSF

examination. WBC count was performed in disposable cell

counting chambers (Uriglass, Menarini) and was performed in

duplicate when the first count was ,20 cells/mL. Trypanosomes

were searched for in CSF by direct examination prior or during

the cell counting procedure, followed by the modified single

centrifugation method [27]. Second stage patients were defined as

having .5 WBC/mL and/or trypanosomes in the CSF. First stage

patients were defined as having 0–5 WBC/mL and no trypano-

somes in the CSF. Patients having .5 and #20 WBC/mL and no

trypanosomes in CSF were defined and treated as stage 2 patients,

but highlighted as being in the potential intermediate stage.

Patients or their responsible were informed about the study

objectives and modalities and were asked to provide written

consent. Treatment was provided according to the guidelines of

the national control program for HAT (PNLTHA).

CSF samples were centrifuged immediately after collection. The

supernatant remaining after the diagnostic procedure was

Author Summary

The actual serological and parasitological tests used for the
diagnosis of human African trypanosomiasis (HAT), also
known as sleeping sickness, are not sensitive and specific
enough. The card agglutination test for trypanosomiasis
(CATT) assay, widely used for the diagnosis, is restricted to
the gambiense form of the disease, and parasitological
detection in the blood and cerebrospinal fluid (CSF) is
often very difficult. Another very important problem is the
difficulty of staging the disease, a crucial step in the
decision of the treatment to be given. While eflornithine is
difficult to administer, melarsoprol is highly toxic with
incidences of reactive encephalopathy as high as 20%.
Staging, which could be diagnosed as early (stage 1) or
late (stage 2), relies on the examination of CSF for the
presence of parasite and/or white blood cell (WBC)
counting. However, the parasite is rarely found in CSF
and WBC count is not standardised (cutoff set between 5
and 20 WBC per mL). In the present study, we hypothesized
that an early detection of stage 2 patients with one or
several proteins in association with clinical evaluation and
WBC count would improve staging accuracy and allow
more appropriate therapeutic interventions.
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aliquoted, stored and shipped frozen at 220uC or below. For the

study reported here, a total of 100 CSF samples, taken before

treatment, were tested. These samples originated from 21 stage 1

(S1) and 79 stage 2 patients (S2). S1 patients were age and sex

matched with 21 S2 patients. Remainder S2 patients were chosen

in order to obtain homogenous median age values. Patients were

classified into three categories of neurological signs; absent (no

neurological signs), moderate (at least one major neurological sign

but no generalised tremors) or severe (at least two major

neurological signs including generalised tremors). Major neuro-

logical signs were defined as: daytime somnolence, sensory and

gait disturbances, presence of primitive reflexes (Babinski’s sign,

palmo-mental reflex, perioral reflex), modified tendon reflexes

(exaggeration or abolition), abnormal movements such as tremor

(fine, diffuse and generalised). Neurological signs were not

reported for two patients.

S100b, H-FABP and GSTP-1 measurements
The concentration of S100b was measured using a commer-

cially available sandwich ELISA assay kit (Abnova, Taiwan)

following the manufacturer’s instructions. Briefly, calibrators,

Quality control (QC) and CSF samples diluted 1:4 were incubated

2 hours on microtiter strips pre-coated with polyclonal anti-cow

S100b antibodies. After 3 washes, horseradish peroxidase (HRP)

labelled anti-human S100b antibodies were added, incubated for

90 minutes and washed again before addition of the substrate

solution (tetramethylbenzidine). Color development was stopped

with sulphuric acid and absorbance was read on a Vmax Kinetic

microplate reader, (Molecular Devices Corporation, Sunnyvale,

CA, U.S.A.) at a wavelength of 450 nm.

H-FABP concentration was also determined using a commer-

cially available ELISA kit (Hycult Biotechnology, Uden, Nether-

lands) according to the manufacturer’s instructions. CSF samples

(non-diluted) and standards were incubated (1 hour) together with

peroxidase conjugated secondary antibodies in microtiter wells

coated with antibodies recognizing human H-FABP. After 3

washes, tetramethylbenzidine was added and color development

was stopped by adding citric acid.

The concentration of GSTP-1 was determined using a

homemade ELISA as described by Allard et al. [28]. Briefly,

biotinylated anti-GSTP-1 antibodies (2 mg/mL) (Biosite, Califor-

nia, USA) were coated onto a 96-well Reacti-Bind NeutrAvidin

coated Black Plates (Pierce, Rockford, IL) for 1 hour at 37uC.

After 3 washes, CSF samples (diluted 1:4), quality controls and

standards (recombinant GSTP-1 at concentrations ranging from 0

to 100 ng/mL) were incubated for 1 hour at 37uC, and followed

by a washing step. Alkaline phosphatase conjugated antibodies

against human GSTP-1 (Biosite, California, USA) at 2 mg/mL

were added and incubated for 1 hour at 37uC. After 3 washes,

Attophos AP fluorescent substrate (Promega, Madison, WI) was

added and plates were read immediately on a SpectraMax

GEMINI-XS (Molecular Devices Corporation, Sunnyvale, CA,

U.S.A.) plate reader, using the kinetic mode. Vmax values were

automatically calculated by the instruments based on relative

fluorescence units (RFU) (lexcitation = 444 nm and lemission

= 555 nm).

Concentrations of S100b, H-FABP and GSTP-1 in the CSF

samples were back-calculated using a linear calibration curve

based on measured standards values.

Bead suspension array
The levels of thirteen cytokines and chemokines (IL-1ra, IL-1b,

IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-c, TNF-a, CCL2, CCL4,

CXCL8 and CXCL10) were determined using the Bioplex bead

suspension arrays according to the manufacturer’s instructions (Bio-

Rad, Hercules, CA). Briefly, thirteen sets of color-coded polystyrene

beads were conjugated separately with one of the thirteen different

antibodies against the molecule of interest. All the sets were then

mixed together by the supplier and delivered ready-to-use. An equal

amount of beads was added to each well of a 96-well filter plate.

After a series of washes, standards and samples (diluted 1:4) were

added and incubated for 30 minutes at room temperature. After

washing, a mix of the corresponding thirteen biotinylated detection

antibodies was added and incubated 30 minutes at room temper-

ature. After washing, streptavidin-phycoerythrin (streptavidin-PE)

was added for 10 minutes. After a last series of washes, beads were

re-suspended in the provided assay buffer and each well was

aspirated using the Bio-Plex system. Each bead was identified and

the corresponding target simultaneously quantified based respec-

tively on bead color and fluorescence. The concentration of each

target was automatically calculated by the Bio-Plex Manager

software using corresponding standard curve (5-PL regression)

obtained from recombinant protein standards.

Data and statistical analysis
Descriptive statistics were performed using the SPSS (version

16.0, SPSS Inc., Chicago, IL, USA) and GraphPad Prism (version

4.03, GraphPad software Inc., San Diego, CA, USA) software.

Because none of the markers presented a normal distribution in

concentrations (Kolmogorov-Smirnov test), differences between

groups were tested with non-parametric Mann-Whitney U test

(comparison between two groups) and Kruskal-Wallis test followed

by Dunn’s post-hoc test (comparison between three groups).

Statistical significance for these tests was set at 0.05 (2-tailed tests).

The stage, the presence of the parasite in CSF and the severity of

neurological signs were successively considered as the dependent

variables. The different marker concentrations were considered as

independent variables. Bivariate non-parametric correlations using

the Spearman correlation coefficient were carried out with

statistical significance set at 0.01 (2-tailed tests).

To calculate the sensitivity and specificity of each individual

predictor with respect to staging, the specific receiver operator

characteristic (ROC) curve of each analyte was determined and

the cutoff value was selected as the threshold predicting stage 2

patients with 100% of specificity (Figure S1).

Aabel (version 2.4.2, Gigawiz Ltd. Co., Tulsa, OK, USA) was

used for box plots, SPSS for scatter plots and R (version 2.8.0) [29]

was used for plotting ROC curves.

Panel development
Panel selection was mainly performed as described by Reynolds

et al. [30]. Briefly, the optimized cutoff values were obtained by

modified iterative permutation-response calculations (rule-induc-

tion-like, RIL) using only the molecules that presented a p

value,0.0001 (Mann-Whitney U test), an AUC above 75% and a

significant Spearman correlation with WBC above 0.4 (Table 2).

Each cutoff value was changed iteratively by quantile of 2%

increment and sensitivity was determined after each iteration until

a maximum sensitivity was achieved for 100% specificity. The

permutation–response calculations were conducted using a PERL

program (ActivePerl version 5.10.0.1004, ActiveState Software

Inc.) and data were coded in CSV format.

Results

Biomarker concentration as a function of disease stage
The main characteristics of the 100 patients evaluated in this

study are presented in Table 1. The analytes were classified into

Biomarkers for Staging HAT
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three groups, based on the results presented in Table 2. Criteria

for the classification were the significance (Mann-Whitney U test),

the AUC and the correlation with WBC. In the first group (GR1)

comprising IL-1ra, G-CSF, CCL4, and VEGF, no significant

difference in CSF concentrations between the two stages of HAT

was observed. The second group (GR2) encompassed IFN-c, IL-9,

CCL2 and S100b, for which concentrations in the CSF were

significantly different between stage 1 and stage 2 patients

(0.001,p,0.01, Mann-Whitney U test). The third group (GR3)

included GSTP-1, H-FABP, TNF-a, IL-1b, IL-6, IL-10, CXCL8

and CXCL10, for which the difference between stages was highly

significant (p,0.0001, Mann-Whitney U test) (Figure S2).

To assess the sensitivity and specificity of these analytes for S2

HAT, ROC curves were built. GR1 and GR2 had a low to

medium area under ROC curve (AUC) ranging from 54 to 70%

and also displayed a low sensitivity in detecting S2 patients (4–13%

for GR1 and 10–44% for GR2, see Table 2) at a predefined

specificity of 100%. GR3 showed higher AUC (79–95%), and

sensitivities for identification of S2 patient up to 84% (Table 2).

CXCL10 appeared then as the most accurate predictor for

staging, as, with a cutoff set at 2080 pg/mL, this molecule

identified 66 out of 79 late stage patients and ruled-out all the

early-stage patients.

Correlation between WBC and biomarker concentrations
As the white blood cell count was one of the two reference staging

parameters, we investigated the correlation between the concen-

trations of the sixteen biomarkers and the number of WBC in CSF

(Table 2). There was no significant correlation in the concentrations

of the first and second group of analytes (GR1 and GR2) with WBC,

except for S100b, which had a significant but low Spearman rho

coefficient (0.269, p,0.01). Otherwise, strong correlations were

observed between WBC and the concentrations of GR3 biomarkers

(GSTP-1, IL-1b, IL-6, H-FABP, TNF-a, IL-10, CXCL8 and

CXCL10), with Spearman rho ranging from 0.417 to 0.732 (Table 2

and Figure 1). The levels of GR3 molecules in 8 potential

intermediate stage patients (parasite not detected in CSF and

having .5 and #20 WBC/mL) demonstrated the intermediate

behaviour of this category with some patients appearing as S1 and

others as S2 patients (Figure 1). Based on the above results, only the

GR3 molecules (GSTP-1, IL-1b, IL-6, H-FABP, TNF-a, IL-10,

CXCL8 and CXCL10) were selected for further analyses.

Table 1. Characteristics of the studied population.

Stage 1 Stage 2

Population n 21 79

Gender Male 8 51

Female 13 28

Age Median (range) 32.0 (14–60) 33.0 (13–65)

WBC/ml Median (range) 2 (0–5) 126 (6–6304)

Parasite in CSF N 0 64

Neurological signs* Absence 11 11

Moderate 10 51

Severe 0 15

.5 and #20 WBCmL No
trypanosomes in CSF**

N 0 8

*Neurological signs were not reported for two patients.
**Correspond to the number of patients highlighted as being in the potential

intermediate stage.
doi:10.1371/journal.pntd.0000459.t001

Table 2. Detailed results for all the molecules tested in respect with the stage of the disease.

Absence of parasite
and #5 WBC/ml

Presence of parasite
and/or .5 WBC/ml

Mann-Whitney U
test

Correlation with
WBC

ROC
curve

Markers Median (range) Median (range) p value (spearman rho) % AUC
Cutoff
[pg/mL]

Sensitivity,
% (95% CI)a

GR3 CXCL10 347.3 (24.3–2048.8) 14130.0 (24.3–128900.0) ,0.0001 0.625** 95 .2080.0 84 (74–91)

CXCL8 56.9 (1.3–96.5) 178.9 (1.6–1791.0) ,0.0001 0.557** 94 .97.1 82 (72–90)

IL-10 6.7 (0.9–19.6) 74.5 (2.1–573.1) ,0.0001 0.702** 89 .20.0 80 (69–88)

TNF-a 3.3 (0.5–8.4) 22.5 (1.0–295.4) ,0.0001 0.636** 93 .8.5 78 (68–87)

H-FABP 226.4 (19.8–564.0) 748.3 (0.0–16680.0) ,0.0001 0.417** 86 .571.8 62 (50–73)

IL-6 5.0 (0.2–57.7) 63.8 (0.8–3286.0) ,0.0001 0.732** 94 .58.0 52 (40–63)

IL-1b 0.1 (0.1–0.7) 0.6 (0.1–42.2) ,0.0001 0.445** 80 .0.7 48 (37–60)

GSTP-1 1272.9 (149.7–5026.9) 3014.0 (61.2–75810.0) ,0.0001 0.437** 79 .5078.0 24 (15–35)

GR2 IFN-c 68.7 (8.6–209.2) 100.4 (1.7–995.5) 0.0049 0.094 70 .210.9 10 (4–19)

IL-9 23.4 (3.6–44.5) 30.7 (3.6–209.6) 0.0051 0.041 70 .45.0 23 (14–34)

S100b 43.2 (4.9–113.0) 78.4 (0.0–353.0) 0.0053 0.269** 70 .114.3 29 (19–40)

CCL2 428.1 (58.6–632.9) 590.2 (15.8–5391.0) 0.0055 0.156 70 .664.7 44 (33–56)

GR1 G-CSF 43.4 (2.4–209.8) 63.2 (2.0–785.9) 0.0866 (ns) 20.029 62 .281.7 4 (1–11)

IL-1ra 817.3 (128.6–3087.6) 782.0 (34.0–11760.0) 0.5229 (ns) 20.065 55 .3092.0 13 (6–22)

CCL4 94.2 (1.5–301.0) 91.9 (5.4–753.9) 0.5423 (ns) 20.143 54 .316.6 5 (1–12)

VEGF 48.3 (20.0–215.7) 49.4 (3.5–1009.0) 0.9393 (ns) 20.105 54 .222.4 9 (4–17)

aSensitivity was set for a specificity of 100% (95% CI, 84–100).
**Correlation is significant at the 0.01 level (2-tailed).
doi:10.1371/journal.pntd.0000459.t002
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Parasites in CNS and biomarker concentrations
GR3 molecule concentrations were classified according to the

absence/presence of trypanosomes in CSF. GSTP-1, IL-1b, IL-

6, H-FABP, TNF-a, IL-10, CXCL8 and CXCL10 concentra-

tions were significantly increased in patients with parasites in

CSF (Figure 2 and Table S1). The six biomarkers associated

with inflammation had a lower p value (,0.0001, Mann-

Whitney U test) and higher AUC (ranging from 78% to 89%)

than H-FABP and GSTP-1 (0.001,p,0.05, Mann-Whitney U

test, AUCs of 69% and 64% respectively). Additionally, when

only S2 patients were analysed, CXCL10, IL-10 and TNF-a
levels still demonstrated a significant difference between patients

with or without trypanosomes in CSF (p,0.05, Dunn’s post-hoc

test, Table S1).

Neurological signs and biomarker concentrations
The patients were classified with respect to the neurological

signs reported (absence, moderate or severe) (Figure 3). All the

GR3 molecules except GSTP-1 showed a significant increase in

concentration associated with higher severity of neurological signs

(p,0.05, Kruskal-Wallis test). Indeed, CXCL10, CXCL8, IL-6,

IL-10, IL-1b, and TNF-a concentrations were significantly

different between patients without neurological signs and severe

neurological signs (p,0.05, Dunn’s post-hoc test), as well as

between patients with moderate and severe neurological signs

(p,0.05, Dunn’s post-hoc test). H-FABP level was significantly

different between patients without neurological signs and severe

neurological signs (p,0.05, Dunn’s post-hoc test). Only the

concentrations of CXCL10, IL-10 and TNF-a could distinguish

Figure 1. Scatter plots correlating the level of GR3 molecules with the WBC count. The horizontal dashed line corresponds to the cutoff
value for the molecule that discriminates between S1 and S2 patients with a specificity of 100%. The left vertical dashed line corresponds to the WBC
count cutoff value used for staging. The second vertical dashed line indicates the suggested cutoff value for staging. Patients between these lines
(.5 and #20 WBC/mL) corresponded to potential intermediate stage patients. The diagonal line corresponds to the linear regression.
doi:10.1371/journal.pntd.0000459.g001
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between absence and moderate neurological signs (p,0.05,

Dunn’s post-hoc test).

Panel selection
In an effort to improve the global sensitivity of molecules in the

prediction of second stage HAT, the GR3 molecules were

combined using the rule induction like (RIL) approach. This

resulted in the identification of a three-molecule panel character-

ized by CXCL10, CXCL8 and H-FABP (cutoff values were set at

2080.0, 97.1 and 571.8 pg/mL, respectively). A positive test

(leading to identification of S2 patient) was obtained as soon as one

of the three molecules included in the panel was above its cutoff

value (Table 3). The panel had a sensitivity of 97% (95% CI, 91–

100%) and, by definition, a specificity of 100% (95% CI, 84–

100%). This means that the panel could identify 77 out of 79 stage

2 patients, and ruled-out all the 21 stage 1 patients. Out off the 77

ruled-in S2 patients, 5 were CXCL10 positive only (.2080.0 pg/

mL), 6 CXCL8 positive only (.97.1 pg/mL) and 3 H-FABP

positive only (.571.8 pg/mL). The rest of ruled-in S2 patients

were identified with either 2 positive molecules (n = 23) or 3

positive molecules (n = 40). When this panel was applied on the

intermediate stage patients (eight patients having .5 and #20

WBC/mL and no trypanosomes in CSF) only one patient gave a

negative test response and thus 7 out of 8 patients were classified as

S2.

Discussion

In this study, including early and late stage HAT patients

(n = 100), we evaluated sixteen molecules as potential staging

markers of HAT, to replace or complement trypanosome

Figure 2. Box-plot of GR3 molecules and WBC classified according to the presence of the parasite in CSF. Median and mean are
represented as a solid line in the box and a diamond respectively. Whisks are defined as 5th–95th percentile without outliers. Half-width of the notch
was calculated automatically by the software.
doi:10.1371/journal.pntd.0000459.g002
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Figure 3. Box-plot of GR3 molecules and WBC classified according to the neurological signs. Median and mean are represented as a solid
line in the box and a diamond respectively. Whisks are defined as 5th–95th percentile without outliers. Half-width of the notch was calculated
automatically by the software. Neurological signs of two patients were not reported (n = 98).
doi:10.1371/journal.pntd.0000459.g003

Table 3. Detailed results for the three molecule panel in respect with the stage of the disease.

Markers
Number of
negative test

Number of
positive test

Mann-Whitney U
test , p value

% AUC
(ROC curve) Panel cutoff

Sensitivity, %
(95% CI)a

Panel CXCL10, CXCL8, H-FABP 23 77 ,0.0001 99 $1 molecule above its
cutoff valueb

97 (91–100)

aSensitivity was set for a specificity of 100% (95% CI, 84–100).
bCutoff values: CXCL10.2080.0 pg/mL, CXCL8.97.1 pg/mL and H-FABP.571.8 pg/mL.
doi:10.1371/journal.pntd.0000459.t003
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detection and WBC count. Eight of these molecules, CXCL10,

CXCL8, IL-6, IL-10, IL-1b, TNF-a, H-FABP and GSTP-1,

presented concentrations significantly elevated in the CSF of late-

stage HAT patients. We demonstrated that the CSF concentration

of CXCL10 is highly elevated in stage 2 patients when compared

to stage 1, highlighting this molecule as a potential new staging

marker for sleeping sickness. A combinatorial approach has been

applied in staging of HAT, in order to improve the sensitivity. This

method has led to the identification of a panel consisting of

CXCL10, CXCL8 and H-FABP, that identified late-stage patients

with a sensitivity of 97% at 100% specificity.

H-FABP is a small protein belonging to the fatty acid-binding

proteins (FABPs) and known to be expressed in the brain [31]. In

myocardial infarction, HFABP is quickly released after the tissue

damage [32,33]. It has been suggested that the release of H-FABP

from damaged cells could be used for diagnosis of acute and

chronic brain injuries [31]. GSTP-1 is a member of the

Glutathione S-transferase superfamily, playing a role in oxidative

stress. Its expression in brain has not been well studied, but GSTP-

1 seems to be the main isoform in brain [34] and may function as a

brain damage biomarker [24]. Our results showed a higher level of

both H-FABP and GSTP-1 in CSF of late stage patients compared

to early stage patients. These two molecules are known to be

associated with early brain cell death [24,31], which could be

correlated with the observed increase of their concentration in

late-stage HAT patients. From now, it is not know if these two

molecules were also associated with the inflammatory process.

Cytokines and chemokines play an important role in inflam-

matory processes and blood-brain barrier (BBB) dysfunction [35],

and could therefore be potentially used as markers for staging

HAT [11,16,36]. In the present study, the measured levels of

inflammation-related proteins in CSF showed significant differ-

ences according to the disease progression. Indeed, concentrations

of IL-1b, IL-6, IL-10, TNF-a, CXCL8 and CXCL10 were

increased in the CSF of patients in late stage HAT compared to

those in early stage of the disease. In addition, the levels of IL-1b,

IL-6, CXCL8 and IL-10 were similar to those already reported for

T. b. gambiense HAT [11,16]. IL-1b is a pro-inflammatory cytokine

that induces leukocytes infiltration [37] and is rapidly expressed in

response to brain damage [35]. The high level of IL-1b found in

CSF of stage 2 patients confirmed its probable association with the

inflammatory process. Furthermore, its level was clearly correlated

to the presence of severe neurological signs, supporting a potential

release in relation to neurodegeneration. IL-6 and IL-10 are both

anti-inflammatory cytokines. Their increased level in the CSF

according to the stage as well as the severity of the neurological

signs confirmed their activation associated with disease progres-

sion. The concentration of the two molecules was significantly

increased in patients with more than 20 WBC/mL, which may

suggest a probable expression after an already activated inflam-

matory process. Indeed, it has been demonstrated in vervet

monkey models of HAT that IL-10 is associated with down-

regulation of pro-inflammatory cytokines (IFN-c and TNF-a) in

the late stage of T. b. rhodesiense disease [38]. The level of the pro-

inflammatory chemokine CXCL8 was also significantly elevated in

CSF of S2 patients and correlated well with both presence of

trypanosomes in CSF and severity of neurological signs. CXCL8 is

a strong neutrophil attractant [16], which could thus not explain

the good correlation of CXCL8 and the number of WBC (mainly

B-lymphocytes) in CSF. However, its elevation in patients with a

relatively low number of WBC (between 5 and 20/mL) suggests an

early activation, which may play a role in BBB dysregulation [11].

The pro-inflammatory cytokine TNF-a has been reported as

being involved in blood-brain barrier dysfunction [39]. These

authors also demonstrated that trypanosomes may induce synthesis

of TNF-a. In the present study, the increasing level of TNF-a was

associated with disease progression as well as the presence of the

parasite in CSF. These results suggested that parasites invasion into

the CNS may lead to TNF-a production, which generated then CNS

inflammation [14]. Additionally, an elevation according to the

severity of the neurological symptoms was observed, which may

support the neurotoxic effect of this cytokine in HAT [35].

CXCL10, also known as IP-10, is a pro-inflammatory chemokine

with a central role in inflammatory responses [40]. The main effect

of CXCL10 as a chemotactic molecule is activation of T cell

migration to the site of inflammation, after binding to its receptor,

CXCR3 [41]. The involvement of this chemokine in different CNS

disorders has been demonstrated, such as viral meningitis [42] and

multiple sclerosis [43], where increased CXCL10 levels in the CSF

correlated with tissue infiltration of T lymphocytes [44]. In our study,

the concentration of CXCL10 increased with progression of the

disease, and was highly correlated with the number of WBC in CSF.

Many studies have pointed out astrocytes as the primary source of

CXCL10 at the level of the CNS and showed that this molecule is

responsible, as chemoattractant, for the influx of activated T

lymphocytes in brain [43,45–47]. Indeed, there is a predominance of

plasma cell infiltration in the brain of trypanosomiasis infected

individuals. In addition, it has very recently been shown in a mouse

model of HAT that CXCL10 may play an important role in T-cell

recruitment into the brain parenchyma and is probably associated

with brain invasion by trypanosomes [48]. Furthermore, the early

activation of cytokine production (TNF-a, IL-6, and IFN-c) by

astrocytes and microglia in mice models infected with T. brucei before

observation of an inflammatory response [49] has confirmed an

important role of astrocyte activation in CNS inflammatory

response. In consequence, early astrocyte activation, which induces

CXCL10 production, is probably linked with BBB dysfunction and

may occur before the inflammatory process. These hypotheses were

supported by the increase CXCL10 concentration observed in

patients having .5 and #20 WBC/mL but without trypanosomes

detected in the CSF. The CXCL10 level was also demonstrated to

be elevated in patients with cerebral malaria, and pointed out as

potentially inducing apoptosis of endothelial cells leading to BBB

breakdown [17] Recent work has suggested that neuronal apoptosis

associated with calcium dysregulation may be induced by CXCL10

[50]. Even if mechanisms of CXCL10 mediated neurotoxicity

remain unclear, we showed that the concentration of CXCL10 was

correlated to the severity of neurological signs, supporting a possible

involvement of this protein in neuronal injury pathways. Thus,

CXCL10 expression in late stage HAT patients may be associated

with both cell death and inflammatory process. Finally, active

tuberculosis and pregnancy, two exclusion criteria in this study, have

also been reported as modulating the level of CXCL10 [51,52].

Although they have only been evaluated on serum and whole blood

samples so far, it is not excluded that these criteria could potentially

induce CXCL10 modulation in CSF. Nevertheless, our data

demonstrated that CXCL10 is an efficient tool for staging patients,

and suggested a potential role of CXCL10 as an early marker of

parasite invasion into the CNS.

As the investigated proteins may be involved in different

biological mechanisms, we evaluated in this study a strategy to

combine results of each molecule, in order to find a panel able to

discriminate more accurately early and late stage patients. This

highlighted a panel of three molecules, including CXCL10 (the

most promising single molecule), CXCL8 (another chemokine)

and H-FABP (a marker of brain damage). With a specificity of

100%, this panel increased the sensitivity for staging of HAT

patients up to 97% (compared to the 84% obtained with CXCL10
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taken individually). Although the number of ‘‘intermediate’’

patients was small, the panel appeared to classify them rather as

S2 patients (7/8 patients). This supports the current recommen-

dation by WHO to consider such patients as S2 patients and treat

them with drugs used for late stage disease. However, there is a

need for more studies on T. b. gambiense and T. b. rhodesiense

patients, before and after treatment, as well as on other parasitic

diseases such as cerebral malaria, to verify these results and assess

the feasibility of using the three-molecule panel as a complement

to WBC count. There are obviously some drawbacks concerning

this approach. Firstly the obtained panel is not 100% sensitive and

thus some stage 2 patients will not be detected. The influence of

other possible co-infections should also be evaluated in order to

determine if they significantly modulate the evaluated molecules.

Indeed, the three molecules included in the panel could potentially

all be markers of other CNS disorders. It is also evident that the

methods described in this study could not be implemented in such

a way directly in the field and should be first transformed into a

more simplified technique as for example a lateral flow

immunoassay. Another limitation is the continued requirement

of the invasive lumbar puncture since the molecules highlighted in

this study have been evaluated on CSF samples.

In conclusion, the present study demonstrated the utility of

inflammation-related proteins and brain damage markers as

indicators of the second stage of HAT but potentially in other

CNS disorders as well. We highlighted the value of CXCL10 as an

efficient staging biomarker for T. b. gambiense infected HAT

patients. Additionally, a combination of CXCL10 with CXCL8

and H-FABP resulted in a highly sensitive tool for identification of

late stage HAT patients.

Supporting Information

Figure S1 ROC curves of GR3 molecules and the panel. *Cut-

off value for each molecule [pg/ml] and for the panel is displayed

by a point and the numeric value. In parenthesis, sensitivity (%) of

each molecule was set for 100% specificity. Area under the ROC

curve (AUC) is also given.

Found at: doi:10.1371/journal.pntd.0000459.s001 (1.37 MB TIF)

Figure S2 Box-plot of GR3 molecules classified according to the

stage of the disease. *Median and mean are represented as a solid

line in the box and a diamond respectively. Whisks are defined as

5th–95th percentile without outliers. Half-width of the notch was

calculated automatically by the software.

Found at: doi:10.1371/journal.pntd.0000459.s002 (0.69 MB TIF)

Table S1 Detailed results for GR3 molecules in function of the

presence of trypanosomes in CSF (according or not to the stage)

and the neurological signs.

Found at: doi:10.1371/journal.pntd.0000459.s003 (0.01 MB

DOC)
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
Discussion, 

conclusions and 
perspectives





In this thesis, we investigated the feasibility of the combination of biomarkers into 

panels.  We  especially  focused  our  work  on  the  definition  of  clear  and 

understandable models, and their validation with statistical means.

After  a  general  introduction  of  the methods  available  for  combining  biomarkers 

(chapter 2), we presented the two tools developed during this project. The pROC 

package for R and S+ (chapter 3) is dedicated to ROC analysis.  It features several  

ROC comparison tests and other statistical methods that are not available together 

in  most  statistical  software.  PanelomiX  (chapter  4)  is  a  workflow  to  combine 

biomarkers  based  on  thresholds  with  a  web  interface.  Finally,  chapters  5  and  6 

presented two clinical applications with aneurysmal subarachnoid hemorrhage and 

human African trypanosomiasis.

This  concluding  chapter  summarizes  and  discusses  the  results  presented  in  the 

papers in the context of the goals of this thesis, and proposes a few possibilities to 

build better biomarker panels.

1 Propose a framework to easily create white-box panels of 
biomarkers

The first goal of this thesis was to explore ways to combine biomarkers into panels. 

We investigated several  established methods,  such as logistic  regression,  decision 

trees and support vector machines.

We also implemented an approach based on thresholds where the score is computed 

as the sum of positive biomarkers. We created a tool, PanelomiX, that determines 

the  set  of  biomarkers  to  be  included in  the  panel  and  computes  the  thresholds 

associated  with  the  markers  at  the  same  time,  corresponding  to  an  embedded 

multivariate feature selection. To generate an optimal classification, it is performed 

through an exhaustive search.

Due to the computational complexity of the exhaustive search, this approach is not 

applicable for datasets where more than about 10 biomarkers must be combined. 

Therefore,  we  investigated  several  alternative  methods  and  feature  selection 

methods. We found that Random Forest, a combination method based on decision 

trees  and  bootstrapping,  could  be  efficiently  employed  to  outline  the  most 
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interesting  biomarkers  and  thresholds.  This  pre-filtering  method  shows  very 

interesting multivariate characteristics, but being based on decision tree, the optimal 

feature set can be very different from the set that would be optimal for threshold-

based  combinations.  In  addition,  correlated  features  may  be  rated  with  lower 

frequency1 and could thus be spuriously rejected, whereas one of the features in the 

correlated set could have been selected with the fully exhaustive search.

Other  methods  were  tested  such  as  the  top-down  and  bottom-up  approaches 

proposed by Calzolari  et  al.2 and genetic  algorithms3.  Like the exhaustive search, 

these  methods  can  be  employed  to  determine  simulataneously  both  the  set  of 

markers  and  the  associated  thresholds,  thus  representing  powerful  multivariate 

methods with embedded feature selection.

The  method  proposed  by  Calzolari  et  al. was  originally  designed  to  test  drug 

combinations in in vivo studies where each iteration can take up to several weeks2 . It 

is very fast, but it can easily be trapped into local maxima. Indeed, tests showed that 

panels  fitted with this method displayed much less accuracy than with exhaustive 

search and random forest pre-processing. Genetic algorithms were also tested. The 

main issue we faced was that both the set of biomarkers and the thresholds must be 

optimized.  Most  current  implementations of  genetic  algorithms optimize one or 

more numeric values but are not able to select which variables must be included. 

This is for instance the case of the  genalg R package4. While the  subselect package5 

can theoretically do it, it works on correlation matrices rather than on the data itself.  

It uses generalized or multivariate linear models and therefore does not take into 

account the interactions that are specific to the threshold classification method.

Further improvements are still possible. First, the exhaustive search was parallelized. 

However, tests with highly parallel machines showed that it currently does not run 

on more than about 4 cores. Second, the selection of the optimal panel could be 

improved with approaches such as Akaike information criterion (AIC) or Bayesian 

information  criterion  (BIC)6 that  takes  into  account  the  number  of  biomarkers 

included in the panel to favor panels with less biomarkers. It is typically applied with 

log-likelihood  estimates  of  the  performance,  which  could  be  developed  in  the 

context of threshold combinations.
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2 Study the performance of the proposed panels, in comparison 
with single biomarkers and other established methods.

The  second  objective  of  the  project  was  to  estimate  how  this  white-box  panel 

method compared with individual biomarkers in order to get a better estimation of 

its  true  benefits.  We  implemented  an  approach  based  on  receiver  operating 

characteristic (ROC) analysis, with tests to compare full or partial areas under the 

ROC curve. As the performance of the panels is overestimated when it is measured 

on the same data that was employed to train it, and because independent test sets 

are most often not available in clinical research, we employed cross-validation to 

obtain an estimate of the performance of the panels free of over-fitting. In order to 

perform a fair comparison, and because single biomarkers have been shown to be 

over-fitted  too7,  we  had  to  find a  way to  cross-validate  the  biomarkers.  Because 

single  markers  are  often  analyzed  with  a  threshold,  we  applied  it  in  a  cross-

validation setup. The result is a panel containing one biomarker, and a ROC curve 

with one single point in the ROC space.  It  has been shown before that the area 

under  this  kind  of  ROC curve  is  negatively  biased8.  However,  this  effect  can  be 

mitigated. To this end, we repeated the cross-validation several times, and averaged 

the  predictions  obtained  over  the  runs.  The  resulting  ROC  curve  is  smoothed 

around the point  of  sensitivity/specificity  of  interest,  and the comparison of  the 

partial AUC is then valid.

The comparison with other combination methods is straightforward, because the 

cross-validation can be applied in exactly the same way as for the PanelomiX panel. 

Therefore, the ROC estimates can be directly compared.

As expected, we found that the performance of PanelomiX compared favorably with 

the separate biomarkers, even without the cross-validation (chapter 4). In addition, 

PanelomiX also yielded a better classification than established methods like SVM, 

Rpart and logistic regression on the aneurysmal subarachnoid haemorrhage dataset.

Nevertheless, this approach suffers from several limitations. First, the ROC analysis 

and especially the AUC do not give precise information about the sensitivity and 

specificity of the test and therefore does not precisely indicate how well the patients 

of  each  class  will  be  classified.  An  alternative  to  ROC  analysis  is  to  compute 
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contingency  tables  and  apply  McNemar's  test  9.  However,  this  test  suffers  from 

several limitations too10, the most critical of which is its sensitivity to the proportion 

of negative to positive cases. This could be addressed by considering only diseased 

patients  for  the  comparison  of  sensitivities,  and  healthy  patients  for  the 

specificities11. Second, the validity of the method of comparison between ROC curves 

of panels with single markers should be assessed through simulation to ensure that 

the comparison is really unbiased.

3 Build interfaces to be used by the scientists in the lab

As it was performed embedded in a mostly “wet”-lab, one of the main targets of the 

project  was  to  produce  tools  that  can  be  easily  used  by  researchers  without  an 

extended knowledge in bioinformatics. They need to be able to operate the tools by 

themselves,  without  the  help  of  a  bioinformatician.  Therefore,  a  programming 

library or a command-line tool is not acceptable and a graphical user interface (GUI), 

potentially web-based, is required.

The first tool that was built and publicly released is pROC. As presented in chapter 3, 

it includes both a GUI for non-programmer users, and a command-line interface in 

R and S+ for the users of those languages and statistical environments. As it was 

released on the CRAN, the public repository for R packages,  it  quickly gained in 

popularity  and  was  already  used  in  more  than  30  published  research  articles  in 

various international groups. To take only a few examples, McLaughlin employed it 

to propose stressor-response model in water quality management12, and Leichtle et  

al. applied it to the evaluation of panels of metabolites13. Bryceson  et al. compared 

the performance of several assays14, Einav  et al. evaluated the performance of two 

biomarkers15, Ignatiadis et al. predicted the outcome after breast cancer16 and Plaisier 

et al. selected models of miRNA regulatory networks17.

The second tool was PanelomiX. It is described in detail in chapter 4, together with 

the algorithms implemented. It will also be published soon. It features a web-based 

interface for an easy management of panels, from data submission to results display. 

Even though it has not been the subject of a publication yet, it has been applied to 

118



various clinical datasets by three scientists of the lab and will be commercialized by a 

British private company.

4 Applicability to other kinds of datasets

All  the  applications  shown in  chapters  3  to  6  were  datasets  available  in  the lab.  

Proteins  were  already  measured  with  ELISA  or  equivalent  techniques,  and  the 

combination  of  biomarkers  was  an  additional  step  in  the  analysis  that  wasn't 

planned at the time of the collection of the data. We also applied this methodology 

to two third-party datasets. The results are briefly described and commented in the 

next few pages.

4.1 Alzheimer's disease study

A partner from Kings College in London developed SRM assays for several proteins  

of interest in the diagnosis of Alzheimer’s disease. Nine proteins were represented by 

one or more peptides, with one or more transitions measured for each peptide on 

two different instruments, a triple quadrupole and an ion trap. Quantitative data 

was available for 89 patients, 29 controls and 60 patients suffering from Alzheimer’s 

disease. We first carried out a univariate analysis with pROC to highlight the most 

interesting  transitions.  Striking  differences  were  observed  between  the  two 

instruments. For instance on the triple quadrupole, a transition of the Complement 

C3 protein was found with 97% specificity (95% CI: 90-100%) and 29% sensitivity 

(95% CI: 17-41%). On the ion trap, the same transition displayed only 10% sensitivity 

(95% CI: 3-18%) at a similar specificity. On the other hand, the transition with the 

best discrimination power on the ion trap was one of the Complement factor H that 

showed a sensitivity of 18% (95% CI: 10-28%) with 97% specificity (95% CI: 90-100%), 

but  this  transition  had  less  than  7%  sensitivity  (95%  CI:  0-42%)  on  the  triple 

quadrupole. Confidence intervals were rather large due to the rather limited number 

of  patients  and  the  low  signal  of  the  transitions,  and  the  differences  are  not 

significant. Nonetheless, this analysis highlighted the potential utility of PanelomiX 

as an additional first filter to select SRM transitions18.

Next, we applied PanelomiX to find the best combinations of 3 biomarkers. The data 

was analyzed in two ways: transitions were first analyzed as separate predictors (40 
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variables),  and  then  we  took  the  median  of  all  the  transitions  of  a  protein  as 

predictor (resulting in 9 variables). The rationale of the averaging is to reduce the 

noise  present  in  the  data.  This  would  work  well  if  the  transitions  have  similar 

ionization and flying properties in the mass spectrometer. However, it is likely not 

the case due to post-translational modifications that affect the peptides specifically, 

and  different  peptides  could  have  different  performance  characteristics.  Some 

transitions of a given peptide may also display higher classification performances, 

especially if they have better ionization characteristics. In this case,  averaging the 

transitions  would  reduce  the  classification  performance  of  the  data.  Indeed,  we 

observed the best classification performance with the separate transitions.

On the TSQ dataset, we found a panel of 3 transitions with 97% specificity (95% CI: 

90-100%) and 54% (95% CI: 42-67%) sensitivity on the training set. However,  this 

panel  was  not  confirmed  with  cross-validation  where  only  one  out  of  the  3 

transitions  was  consistently  selected  through  the  folds.  Many  transitions  could 

replace the 2 other ones as the dataset slightly changes. In addition, with 40 variables 

and 89 patients, the level of over-fitting was large and the performance on the test 

sets was poor. Random Forest pre-processing was also applied. The level of over-

fitting was slightly reduced, but the  fitting itself was reduced too (46% specificity, 

95% CI: 33-60%, instead of 54%) and the performance on cross-validation was poor.

Overall,  this  approach  could  highlight  a  very  promising  transition  of  the 

Complement  C3  protein,  that  appeared  superior  to  the  other  ones  both  with 

separate ROC analysis and in combination. However, the sample size was too small 

to  draw  robust  conclusions.  In  addition,  as  shown  in  chapter  4,  panels  of  3  

biomarkers does not improve the classification as much as panels combining more 

markers.  A  larger  dataset  with  900  patients  is  currently  being  analyzed  with 

PanelomiX and should bring much more robust results.

4.2 The breast cancer study

The second dataset  on  which we applied  PanelomiX was  a  microarray  study on 

breast  cancer  published in  200219,20.  The goal  was to  predict  the development of 
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distant metastases within 5 years. To that end, the expression of 19553 genes was  

measured for 78 training patients.

Because of the high dimensionality of this dataset, Random Forest pre-processing 

was applied. When all the genes were analyzed, we figured out that Random Forest 

was not able to cope with so many variables. Indeed, computation time increases 

exponentially with the number of variables. It took about one minute to compute 

the forest with 1000 variables on a desktop computer, and doing it for all genes was 

not realistic. Therefore, we limited the Random Forest to the 187 genes correlated 

with the outcome as was done by the authors. It should be noted that this univariate 

filter may well reject proteins that would be interesting in a panel. More advanced 

methods such as clustering could probably generate better results.

Next, we analyzed the stability of the Random Forest pre-filtering by repeating 1000 

times the selection of 10 genes. No gene was selected in more than 12% of the runs,  

and no gene was never selected. This indicates that most genes can be substituted 

each other and their presence is not critical in panels. This finding is not surprising 

as all those genes were selected because they were correlated with the outcome of 

interest.

Finally, we ran PanelomiX on this dataset, searching for panels of at most 3 genes. 

We  found  panels  with  good  performances,  but  they  were  not  confirmed  when 

applied  to  the  validation  set  of  295  partially-redundant  patients  where  the 

performance was not higher than that of single genes.

In conclusion, PanelomiX was able to deal with different types of datasets. These 

studies highlighted several limitations of PanelomiX, opening new perspectives for 

the improvement of the method. For example, in the case where more than about 

one  thousand  biomarkers  are  available,  they  must  be  filtered  externally  because 

Random Forest is not able to deal with it.

5 Perspectives

In the future, biomarkers research will need to think about combinations already 

during  the  discovery  phase.  A  recent  paper  by  Brasier  et  al. carried  out  such  a 

combination-aware biomarker discovery21.  To diagnose dengue hemorrhagic fever 
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they combined 34 proteins found significantly differentially expressed with 2-DE and 

LC-MS/MS and 2 cytokines. They directly applied a multivariate adaptive regression 

splines algorithm and found a panel of 8 biomarkers: one cytokine and 7 2-DE spots. 

This  study  shows  an  interesting  approach  to  the  combination  of  biomarkers. 

However, they applied a first univariate filter with statistical significance that could 

have rejected interesting biomarkers with only a small  discrimination power that 

failed the significance test but could prove more significant when combined with 

other biomarkers.

In the same manner, all the biomarkers that have been tested during this project 

have passed a  first univariate  filter. Indeed, the biomarker discovery phase focused 

only on the individual performance of the biomarkers, and combinations were never 

considered  in  that  phase.  In  the  trypanosomiasis  staging  project  presented  in 

chapter 6, the biomarkers were chosen based on literature research and the  post-

mortem cerebrospinal  fluid approach22,23.  For the determination of the outcome 6 

month  after  aneurysmal  subarachnoid  hemorrhage,  presented  in  chapter  5,  the 

biomarkers were either based also on the post-mortem cerebrospinal fluid model (H-

FABP,  NDKA,  UFD-1)  or  biomarkers  that  were  already  measured in  the hospital 

(S100b, WFNS, Fisher, Troponin I). Again, this univariate  filter may have rejected 

biomarkers that did not have a high performance when they were taken individually, 

but that could have a significant impact in a panel.

Therefore, it is crucial to develop multivariate approaches to the early discovery of 

biomarkers. Unfortunately, PanelomiX is not yet appropriate to compute panels on 

datasets with many proteins such as protein microarray datasets.  Random Forest 

was able to deal with up to 1000 biomarkers approximately, which is suficient for 

most  current  discovery  projects  based  on  mass  spectrometry,  but  not  with  the 

thousands of  proteins that  can be measured in  protein arrays  that  must  be pre-

filtered. The efficiency of methods such as shrunken centroids24, correlation-based 

feature  selection25,  Markov  blanket  filters26 or  other  common  feature  selection 

methods for microarray datasets27 should be investigated in this context. In addition 

the reliability of this approach must still be assessed in such setups with simulation 

studies.
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Another promising research area is the network biomarkers approach. It has been 

shown28 that it was essential to study perturbations and responses in the context of 

the whole cell's network. For instance, Janes et al. showed that the JNK kinase can be 

seen both as pro- or anti-apoptotic, depending on the state of the phosphorylation 

network29. While this study focused on kinases in a cell context, it can hold true for 

biomarkers where the level of a biomarker is influenced by the multivariate state of 

the organism. With such an approach, a biomarker can be not only the state of the 

body at a given time, but also correlations (or lack of correlations) in the system 30. 

Network biomarker approaches, by improving our knowledge of cell function, could 

highlight new potential biomarker targets.

6 Conclusion

Panels of biomarkers represent a promising way for potential improvements in the 

classification of patients in clinical studies. They combine information from several 

biomarkers  into  a  single  output  with  improved  performance  characteristics. 

Nevertheless, they come with specific drawbacks. First, the higher risk of overfitting 

compared with simgle biomarkers requires a higher number of patients and specific 

validation schemes to verify the performance claims. Second, the higher costs caused 

by the higher number of measurements requires that the cost to efficiency ratio be 

carefully studied.

In this  thesis  we focused  on the former issue.  We implemented an approach to 

combine biomarkers based on threshold decisions,  called PanelomiX. We showed 

that  it  was  possible  to  study  the  performance  of  such  classifiers  with  receiver-

operating  characteristic  (ROC)  analysis  and  areas  under  the  curve  (AUC).  We 

implemented pROC, a tool to carry this kind of analysis.  We  finally applied it  to 

compare the panel with separate biomarkers and classical classification methods.

This work represents a preliminary attempt to approach the subject of biomarker 

combinations. While similar approaches have been described in the literature, they 

often  lack  important  validation  procedures.  Future  developments  include 

embedding the multivariate dimension during the biomarker discovery phase and 
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the  discovery  of  new  potential  panels  of  biomarkers  with  network  biology 

approaches.
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Supplementary material for pROC: an open-source 
package for R and S+ to analyze and compare ROC curves  


Assessment of the ROC comparison tests 
To ensure that our implementations of the three statistical tests are correct, and to evaluate the 
correlation between them, we generated 600 p-values for each test under the null hypothesis 
(ROC curves are not different) by randomly switching the class labels of the 141 aSAH 
patients. For each null hypothesis, DeLong, Venkatraman (with 10000 permutations) and 
bootstrap (with 10, 100, 1000 and 10000 replicates) tests were performed with a paired and 
unpaired setup. 
We first assessed the existence of a systematic bias towards high or low p values. Figure 1 
shows that the paired tests do not deviate from uniformity under the null hypothesis (One-
sample Kolmogorov-Smirnov test, p = 0.99 for DeLong’s test, p = 0.96 for bootstrap test and 
p = 0.32 for Venkatraman’s test). However paired test are slightly biased towards higher p-
values (One-sample Kolmogorov-Smirnov test, p = 0.02 for DeLong’s test, p = 0.03 for 
bootstrap, p = 0.03 for Venkatraman). 
Next, we tested the relationship between DeLong and bootstrap tests. Both tests determine 
differences in AUCs and should produce similar results. Indeed, figure 2 shows that with 
enough bootstrap replicates, the bootstrap test converges to the values of DeLong’s test. Note 
that DeLong’s test is an asymptotically exact test and thus is not subject to variations when 
repeated tests are performed on the same data. Spearman's rank correlation ρ is above 0.99 for 
all tests with 100 or more bootstrap replicates. For paired p-values lower than 0.1, the 
absolute difference between DeLong and bootstrap p values obtained after 10000 replicates 
was lower than 0.005 in 95% of the tests. The 95% range of the differences increased to 0.011 
and 0.03 for 1000 and 100 replicates respectively. For unpaired p-values, the same trend was 
observed with 95% of the differences within 0.007, 0.013 and 0.03 for 10000, 1000 and 100 
replicates respectively. Therefore, the second decimal of the p value is measured accurately 
with 10000 bootstrap replicates, but not with 1000 or less replicates. 
Finally, we looked at the association between Delong and Venkatraman’s tests. In contrast 
with the bootstrap test, Venkatraman’s test does not estimate the AUC but rather the shape of 
the ROC curve. Thus, we expect a lower correlation than with bootstrap, as two ROC curves 
with a different shape can have a similar or identical AUC value. Indeed, figure 3 shows a 
much lower correlation than that observed in figure 2 with bootstrap. Note that the figure is 
asymmetric: similar AUCs may have different shapes, but it is less likely that similar shapes 
would have different AUCs.  


Figure legends 


Figure 1  - Histograms of the frequency of 600 test p values under the null hypothesis 
(ROC curves are not different) 
A: DeLong’s paired test, B: DeLong’s unpaired test, C: bootstrap paired test (with 10000 
replicates), D: bootstrap unpaired test (with 10000 replicates) and E: Venkatraman’s test (with 
10000 permutations). 


Figure 2  - Correlations between DeLong and bootstrap paired tests 
X axis: DeLong’s test; Y-axis: bootstrap test with number of bootstrap replicates. A: 10, B: 
100, C: 1000 and D: 10000. 







Figure 3 - Correlation between DeLong and Venkatraman’s 
X axis: DeLong’s test; Y-axis: Venkatraman’s test with 10000 permutations.  


Figure 4 – Binormal smoothing 
Binormal smoothing with pcvsuite (green, solid) and pROC (black, dashed). 
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Cerebral Vasospasm: Monitoring and Treatment.


All patients received intravenous nimodipine at a dose of 2 mg/h from admission until at least completion of the study, except during periods of uncontrolled increased intracranial pressure during which intravenous nimodipine was discontinued. Normovolemia was maintained through the systematic administration of intravenous physiologic electrolyte solution at 1,000–2,000 ml/day and colloids if necessary. Additional fluids were given in case of hypovolemia diagnosed on clinical symptoms and increased systolic pressure variation. After treatment, systolic arterial blood pressure was maintained above 130–160 mmHg by continuous infusion of norepinephrine as needed. Great caution was taken to avoid hyperthermia (above 38.5°C) and hyperglycemia (above 7.5 mmol) through the administration of acetaminophen and insulin as needed. In ventilated patients, arterial carbon dioxide partial pressure (PaCO2) was maintained between 35 and 40 mm Hg, and peripheral oxygen saturation (SpO2) was maintained above 97%. The neurologic and hemodynamic statutes were assessed at 3-hr, additionally to vital signs and pupillary reactivity assessed every hour. TCD was performed at least once a day during the first 10 days. In awake un-sedated patients, cerebral angiography was performed in the event of clinical deterioration or new symptoms (cephalalgia, confusion, seizure, motor deficit) or mean TCD velocities above 120 cm/s or a change greater than 50 cm/s in mean TCD velocity [1]. In sedated patients, only the TCD criteria were used to evaluate the need for cerebral angiography. A mean velocity above 200 cm/s or an increase above 50 cm/s in the last 48 hrs prompted angiogram in this selected group of patients. Each vasospasm episode was treated by intraarterial nimodipine administration as previously described [2] followed by intraarterial milrinone (2 mg) when the response to nimodipine was inadequate [3]. This treatment was repeated if necessary.


Angioplasty was used as second-line treatment when nimodipine combined with milrinone


was ineffective and the spastic artery was accessible to dilation. Additionally, hypertensive


therapy was reinforced. Target SBP was 160 to 180 mm Hg. Clinical suspicion of vasospasm was confirmed using cerebral angiography.
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H-FABP, S100β, NDKA, UFD1 and Troponin I measurements 

After centrifugation at 1500g for 15 min at 4°C, serum samples were aliquoted and stored at –80°C until analysis. Cardiac Troponin I blood concentration was systematically measured using the Stratus Analyzer (Dade, Massy, France). S100β concentration was measured with an immunoluminometric sandwich assay on a LIA-mat 300 analyzer (Byk-Sangtec France Laboratories, Le Mée sur Seine, France) using the manufacturer’s reagents [4]. The detection limit of the assay was 0.02 μg/L. Values in healthy patients are considered to be below 0.15 μg/L. Intra-assay and inter-assay coefficients of variation were less than 7 and 9%, respectively with both sets of patients.


H-FABP concentration was determined with a commercially available ELISA (Hycult Biotechnology, Uden, Netherlands) according to the manufacturer’s instructions. Briefly, diluted samples (1:5) and standards were incubated together with peroxidase conjugated second antibodies (tracer) in microtiter wells coated with antibodies recognizing human H-FABP. Unbound material in the sample and excess tracer were removed by washing and substrate (tetramethylbenzidine) was added to the wells. The enzyme reaction was stopped by the addition of citric acid. Color development was assessed with a microplate reader, MileniaTM Kinetic Analyzer, (Diagnostic Products Corporation, Los Angeles, CA, U.S.A.) at a wavelength of 450 nm. H-FABP concentration was calculated with a calibration curve obtained with the tracer. The minimum detection level of the assay was 0.250 µg/L. Values in healthy patients are around 1.6 μg/L. Intra-assay and inter-assay coefficients variation were less than 8% and 10%, respectively with both sets.


The concentration of NDKA and UFD1 were determined by home-made ELISA as previously described by Allard et al. 


[5, 6] ADDIN EN.CITE . Fifty (L of appropriate diluted antibody-biotin conjugated (2 (g/mL) (Biosite, California, USA) were incubated one hour at 37°C in 96-well Reacti-BindTM NeutrAvidinTM coated Black Plates (Pierce, Rockford, IL). After the washing steps, 50 (L of antigen (either recombinant protein or heparin-plasma samples diluted 1:2) was added and incubated for one hour at 37°C. Excess of recombinant or samples was removed by washing and 50 (L of alkaline phosphatase conjugated antibodies (Biosite, California, USA) at 2mA/mL were added for one hour at 37°C. The 96-well plate was then washed 3 times and 50 (L of fluorescence Attophos® AP Fluorescent substrate (Promega, Madison, WI) were added. Plates were read immediately on a SpectraMax GEMINI-XS, (Molecular Devices Corporation, Sunnyvale, CA, U.S.A.) fluorometer microtiter plate reader using the kinetic mode relative fluorescence units (RFU) ((excitation=444 nm and (emission=555 nm). Each sample was assayed in duplicate and distributed randomly on the plate. The intra and inter-run coefficients of variation were always under 10% for both sets. Calibration curves were performed in the same plate using the recombinant proteins. The NDKA and UFD1 recombinant proteins were diluted to concentrations of 100, 50, 25, 12.5, 6.25, 3.125, 1.56 and 0 µg/L in the dilution buffer. A calibration curve was performed using a linear regression in the linear range of the curve (1.56 to 100 µg/L). Protein levels were initially expressed in relative fluorescence units (RFU) and the concentrations were calculated via the calibration curve.

NDKA, UFD-1 and H-FABP levels were measured manually in the set of 28 aSAH patients as described above, whereas in the set of 113 aSAH patients they were measured on an automated platform (TECAN group Ltd., Switzerland). Measurements occurred with a 14 month period delay between the two sets. Two different technicians blindly performed these analyses.
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Univariate logistic regression was performed in SPSS software. Adjusted OR with 95% CI were calculated and a p value of less than 0.05 was considered significant. Effect sizes were estimated as odds ratios (OR, with 95% confident interval, CI) for unfavourable response associated with increments in the predictor variable equal to the inter-quartile range except for WFNS and modified Fisher scores where the adjustment is 1 variation.

		

		Univariate LR


with continuous predictors



		

		IQR

		Adjusted Odds Ratio


(95% CI)

		p



		Age

		19.75

		1.9


(1.1- 3.4)

		0.03



		WFNS

		1

		2.4


(1.8-3.3)

		<0.0001



		Modified Fisher

		1

		2.9


(1.6- 5)

		<0.0001



		HFABP

		4.075

		1.3


(1.1- 1.5)

		0.013



		S100B

		0.2475

		3.5


(2.3- 6.3)

		< 0.0001



		Troponin I

		0.5225

		1.3


(1.1- 1.6)

		0.004



		NDKA

		8.343

		1.1


(0.9- 1.4)

		0.32



		UFD1

		103.2

		1.2


(1.0- 1.5)

		0.22



		PARK7

		54.80

		1.06


(0.9- 1.2)

		0.44





Univariate logistic regression analysis of outcome as a function of biomarker concentration confirmed WFNS and modified Fisher scores, as well as H-FABP, S100β and Troponin I as significant predictors of a poor outcome (see Table below). OR for poor outcome, estimated for concentration increment equal to the IQR, were between 1.3 for Troponin and H-FABP and 3.5 for S100β. NDKA and UFD-1 were not significantly associated with outcome when considered alone. For clinical scales, models predicted that patients with 1-unit higher WFNS or modified Fisher scores would present 2.4 and 2.9-fold higher risks to have a poor outcome, respectively. OR of age (1.9) appeared significant despite its low pAUC and the weak SE and SP found on the ROC curve. Univariate LR analysis performed on the test set indicated that the positive 6-parameter panel was associated with an OR of 5.84 for unfavourable outcome (p< 0.0001).
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Stepwise backward multivariate logistic regression analysis was used to further investigate predictors of poor outcome in the verification set. Effect size was estimated as the odds ratio (OR, with 95% CI) for unfavourable response associated with an increment equal to the inter-quartile range of the predictor, except for WFNS and modified Fisher scores where the increment was 1-point. Absence of colinearity was estimated by Pearson correlation coefficient (< 0.7). The 6 parameters present in the panel were considered as binary predictors using a single multiple logistic regression model with unfavourable outcome as the dependent variable. All parameters in the proposed panel contributed significantly and independently, with adjusted OR between 4.0 and 14.0. 

		

		Adjusted OR


(95% CI)

		p



		WFNS

		4.3


(1.2- 15)

		0.02



		NDKA

		4.0


(1.4- 17)

		0.03



		Troponin I

		4.9


(1.9- 23.7)

		0.01



		H-FABP

		7.0


(1.7- 28.5)

		0.006



		S100β

		13.5‡


(1.7- 105.7)

		0.01



		UFD-1

		8.2


(1.1- 14.5)

		0.04





‡ As S100β with a cut-off value at 0.5µg/L gives 100% specificity to predict outcome, it was impossible to calculate adjusted OR in multivariate logistic regression (value close to +∞). Consequently, the second best cut-off (0.49 µg/L) of S100β was used to calculate OR.
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		Cutoff Values

		SE (%)*

		NPV†



		WFNS

		> 2.0

		33

		73



		NDKA

		> 11.1 µg/L

		35

		73



		Troponin I

		> 0.3 µg/L

		42

		76



		H-FABP

		> 5.9 µg/L

		47

		77



		S100β

		> 0.5 µg/L

		57

		81



		UFD-1

		> 271.5 µg/L

		63

		83





Specific contribution of each individual parameter in the panel to the performance of the prediction.

* Sensitivity calculated for 100% specificity 


†NPV = negative predictive values for positive predictive values at 100%     


When WNFS was removed, the sensitivity dropped from 68.3 to 33% in the 113-set. Interestingly, even though NDKA was a poor predictor when considered alone, the effect of removing it from the panel was as important as for WFNS, with sensitivity decreasing from 68.3 to 35%.
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Table S1: Detailed results for GR3 molecules in function of the presence of trypanosomes in CSF (according or not to the stage) and the 
neurological signs.  
 
 
Trypanosomes in CSF Without With Mann-whitney ROC curve


Median (range) Median (range) p value % AUC CO [pg/ml] Sensitivity % (95% CI)*
GR3 CXCL10 727.1 (24.3-44930.0) 19980.0 (24.3-128900.0) <0.0001 88 > 11699.0 67 (54-78)


CXCL8 68.8 (1.3-545.5) 215.0 (1.6-1791.0) <0.0001 83 > 206.4 52 (39-64)
IL-10 7.9 (0.9-200.1) 86.3 (2.1-573.1) <0.0001 87 > 37.0 77 (64-86)
TNF-a 4.1 (0.5-134.7) 24.3 (1.0-295.4) <0.0001 86 > 11.2 78 (66-87)
IL-6 6.8 (0.2-3) 77.0 (0.8-1736.0) <0.0001 86 > 106.4 41 (29-54)
IL-1b 0.1 (0.1-11.1) 1.0 (0.1-42.2) <0.0001 78 > 0.8 53 (40-66)
GSTP1 2000.0 (149.7-71820.0) 2962.0 (61.2-75810.0) 0.0218 64 > 5078.0 25 (15-37)
HFABP 368.4 (19.8-3451.0) 747.7 (0.0-16680.0) 0.0018 69 > 2149.0 11 (5-21)
WBC 3.0 (0.0-6304.0) 163.5 (23.0-1521.0) <0.0001 89 > 635.5 20 (11-32)


* sensitivity was set for a specificity of 92% (95% CI, 78-98)


Trypanosomes in CSF WBC<5/ul, no trypa (1) WBC>5/ul, no trypa (2) WBC>5/ul, Trypa (3) Kruskal-wallis Dunn's Multiple Comparison Test
(according to the stage) Median (range) Median (range) Median (range) p value 1 Vs 2 1 Vs 3 2 Vs 3
GR3 CXCL10 347.3 (24.3-2049.0) 2388.0 (722.5-44930.0) 19980.0 (24.3-128900.0) <0.0001 < 0.05 < 0.001 < 0.05


CXCL8 56.9 (1.3-96.5) 142.2 (37.3-545.5) 215.0 (1.6-1791.0) <0.0001 < 0.01 < 0.001 ns (> 0.05)
IL-10 6.7 (0.9-19.6) 13.9 (2.1-200.1) 86.3 (2.1-573.1) <0.0001 ns (> 0.05) < 0.001 < 0.01
TNF-a 3.3 (0.5-8.4) 8.7 (2.4-134.7) 24.3 (1.0-295.4) <0.0001 < 0.05 < 0.001 < 0.05
IL-6 5.0 (0.2-57.7) 11.0 (6.4-3286.0) 77.0 (0.8-1736.0) <0.0001 < 0.05 < 0.001 ns (> 0.05)
IL-1b 0.1 (0.1-0.7) 0.3 (0.1-11.1) 1.1 (0.1-42.2) <0.0001 ns (> 0.05) < 0.001 ns (> 0.05)
GSTP1 1273.0 (149.7-5027.0) 3120.0 (609.4-71820.0) 2962.0 (61.2-75810.0) 0.0002 < 0.01 < 0.001 ns (> 0.05)
HFABP 226.4 (19.8-564.1) 863.4 (138.3-3451.0) 747.7 (0.0-16680.0) <0.0001 < 0.001 < 0.001 ns (> 0.05)


Neurological signs Absence Moderate Severe Kruskal-wallis Dunn's Multiple Comparison Test
Median (range) Median (range) Median (range) p value   Absence vs Moderate   Absence vs Severe   Moderate vs Severe


GR3 CXCL10 1243.0 (25.4-37570.0) 10770.0 (24.3-65600.0) 39160.0 (2388.0-128900.0) <0.0001 < 0.05 < 0.001 < 0.01
CXCL8 86.4 (1.3-402.1) 163.9 (1.6-674.7) 531.9 (37.3-1791.0) <0.0001 ns (>0.05) < 0.001 < 0.001
IL-10 8.4 (0.9-573.1) 45.0 (2.1-471.5) 92.5 (7.6-318.3) 0.0002 < 0.05 < 0.001 < 0.05
TNF-a 6.0 (0.5-72.9) 14.2 (1.0-295.4) 35.4 (3.2-128.3) <0.0001 < 0.05 < 0.001 < 0.05
IL-6 8.7 (0.2-865.7) 37.1 (0.8-986.4) 183.4 (6.9-1736.0) <0.0001 ns (> 0.05) < 0.001 < 0.01
IL-1b 0.1 (0.1-4.5) 0.3 (0.1-42.1) 2.2 (0.1-11.5) <0.0001 ns (> 0.05) < 0.001 < 0.01
GSTP1 2411.0 (149.7-11980.0) 1971.0 (61.2-75810.0) 3881.0 (609.4-15910.0) 0.1826 (ns) ns (> 0.05) ns (> 0.05) ns (> 0.05)
HFABP 368.4 (72.9-3451.0) 579.4 (0.0-16680.0) 963.2 (122.5-8622.0) 0.0127 ns (> 0.05) < 0.05 ns (> 0.05)
WBC 5.5 (1.0-778.0) 92.0 (0.0-2064.0) 192.0 (38.0-856.0) 0.0002 < 0.01 < 0.001 ns (> 0.05)  


 
 
 





